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The aerodynamics of swept wings with leading-edge ice is very complex and not fully 

understood. Previous swept wing icing studies have only provided force balance 

measurements and/or qualitative flow visualization. In order to more fully understand the 

complex aerodynamics it is necessary to understand how the ice influences the drag 

breakdown and the spanwise distributions of lift and drag. This paper utilizes 5-hole probe 

wake surveys and a far-field analysis to decompose the drag into profile and induced drag 

components and to determine the spanwise distributions of lift and drag. It is shown that the 

leading-edge ice primarily influences the profile drag and the induced drag is relatively 

unaltered. Features observed in the lift and drag distributions are related to features seen in 

the wake as well as in surface oil flow visualization.  

 

 

Nomenclature 

c(y)  =    Chord distribution  

Cd  =    Sectional total drag coefficient 

Cdi  =   Sectional induced drag coefficient 

Cdp  =   Sectional profile drag coefficient 

Cl  =   Sectional lift coefficient 

CD  =   Total Drag coefficient 

CDi  =   Induced drag coefficient  

CL  =   Lift coefficient 

D  =   Total Drag 

Di  =   Induced drag 

Dp  =   Profile drag 

L  =   Lift 

P  =   Static pressure 

Pt  =   Total pressure in the wake 

Pt∞  =   Freestream total pressure 

u  =   Streamwise velocity in the wake 

ub  =   Wake blockage velocity 

u’  =   Perturbation velocity  

u*  =   Artificial velocity  

U∞  =   Freestream velocity 

v  =   Spanwise velocity in the wake  

w  =   Normal velocity in the wake 

x  =   Streamwise direction 

y  =   Spanwise direction (positive from root to tip) 

z  =   Normal direction (positive from lower to upper surface) 

α  =   Model angle of attack (measured at the root) 

ψ  =   Stream function in the transverse plane 

ξ  =   Streamwise vorticity 
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1.0 Introduction 

 

It is well known that the presence of ice on aerodynamic surfaces can significantly impact the performance of 

an aircraft.
1
 A considerable amount of effort has been spent gaining an understanding of the aerodynamic impact of 

ice accretion on airfoils.
2,3 

Over the past several years however there has been an increased interest in the effect of 

ice on swept wings. Papadakis et. al.
4
 studied the aerodynamic performance of a swept wing with ice accretions 

formed in NASA’s Icing Research Tunnel.
5
 The wind tunnel model had a leading-edge sweep angle of 28 deg. and 

an aspect ratio of 6.8. Measured lift coefficients decreased by nearly 40% with accompanying minimum drag 

increases of 1200% for certain ice shapes. In addition, Papadakis et. al.
6
 investigated the effects of two simulated ice 

shapes on the performance of a T-Tail with a leading-edge sweep angle of 29 deg. and an aspect ratio of 4.4. The 

simulated ice shapes were tested with and without roughness. The maximum decrease in lift ranged from 10 – 40% 

with drag increases ranging from 86 – 236% for the various configurations tested. More recently, Broeren et. al.
7
 

investigated the effects of various ice simulations on the aerodynamics of a generic transport aircraft. In addition to 

the performance measurements, surface oil flow visualization was used to study the flowfield induced by the ice. 

The flow visualization indicated regions of separated and reversed flow forming a spanwise running leading-edge 

vortex similar to the leading-edge vortex seen by Bragg and Khodadoust
8
 when using LDV to study the flowfield of 

a swept NACA 0012 with a simulated ice shape. Finally, Diebold et. al.
9
 investigated the effects of a simulated ice 

shape on the performance and flowfield of the swept wing used for this paper. They used several techniques 

including force balance measurements, surface oil flow visualization, pressure sensitive paint and qualitative five-

hole probe wake surveys.  

The effects of ice on a swept wing are highly complex and provide measurement challenges and opportunities 

that were not available when testing airfoils. Measurements in the wake of a three dimensional wing using a five-

hole probe (5HP) or similar device can provide a significant amount of information not easily obtainable through 

other means. By measuring total and static pressure as well as all three components of velocity in the wake it is 

possible to obtain not only the total lift and drag but also the spanwise distributions of these quantities and the drag 

can be decomposed into profile and induced drag components. This information cannot be determined from a force 

balance and can prove valuable when trying to better understand the performance effects of the ice. Hackett and 

Sugavanam
10

 used a 5HP to measure the drag of a car and a stalled straight wing. For the stalled wing they showed 

that profile drag accounted for 80% of the total drag while induced or vortex drag made up the remainder.  Brune
11

 

made measurements in the wake of a simple rectangular NACA 0016 wing with an aspect ratio of 6. At an angle of 

attack of 8.2º profile and induced drag accounted for 46 and 54% of the total drag, respectively. Brune also 

presented spanwise distributions of profile and induced drag and it was seen that in both cases the maximum 

sectional drag coefficient occurred at the tips. The maximum induced drag coefficient occurs at the tips due to the 

high level of vorticity in the tip vortex, and the maximum profile drag coefficient occurs at the tips due to the high 

axial velocity deficit within the vortex core; however, when there are large regions of separated flow, the maximum 

profile drag may occur elsewhere along the span. Kusunose
12

 analyzed previously acquired wake survey data, 

including the data of Brune,
11

 using a variety of methods to reduce the data.  

Iced swept wing aerodynamics is complex and not fully understood. Force balance measurements only provide 

total lift and drag and no information about the different drag components or the spanwise variation in lift and drag. 

Flow visualization can only provide qualitative information regarding the spanwise variation in performance. The 

goal of this paper is to use 5HP wake surveys in order to better understand how the ice influences the aerodynamic 

performance of a swept wing by investigating the effects on the different drag components and the spanwise 

distributions of lift and drag. Global and local changes in performance will be related to observed features in the 

flowfield.  
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2.0 Wake Survey Analysis  

 

By analyzing the control volume shown in Fig. 1 the following expressions for lift and drag can be derived, as 

shown in Brune.
11

 Note that lift is in the positive z-direction.  
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While these two expressions are exact, they are not practical from an experimental point of view. Calculating the lift 

requires integrating the pressure over the sidewalls, and both expressions contain integrals that must be performed 

over the entire downstream plane S2. A practical set of equations will consist only of wake integrals such as the first 

integral in Eq. 2, where outside of the wake 

       and the integrand is zero.  

A detailed derivation of the wake survey 

equations used in this paper will not be given 

but can be found in numerous sources.
10,11,12

 

The derivation follows the work of Betz
13

 

and Maskell
14

 and the final expressions are 

given here. The final expressions for lift and 

drag require measurements of the pressure 

and velocity components in the viscous wake.  

One of the main advantages of the wake 

survey as opposed to force balance 

measurements is the ability to decompose 

drag into profile and induced drag 

components. The wake integral expressions 

for the two components of drag are given by 

Eqs. 3 and 4. 
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The total drag was the sum of the profile and induced drag components. In Eq. 3,    and    are known as the 

artificial velocity and wake blockage velocity, respectively. The artificial velocity was introduced by Betz
13

 and is 

defined in Eq. 5. Notice the artificial velocity is equal to the freestream velocity outside of the viscous wake.  

 

                                                                                   ⁄ (      )                                                                (5) 

The wake blockage velocity was interpreted by Maskell
14

 as a small correction due to the effect of tunnel walls. 

 

                                                                         
 

   
∬ (    )
 

                                                                       (6) 

The profile drag only requires measurements of the total pressure and axial velocity within the wake, outside of the 

wake the integrand is zero.  

In Eq. 4, for the induced drag,   and   are the streamwise vorticity and the transverse stream function, 

respectively. The vorticity is defined as:   

 

                                                                                  
  

  
 
  

  
                                                                                  (7) 

 

 

Fig. 1 Control volume and coordinate system used in 

wake survey. 
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The transverse stream function   satisfies the following Poisson equation.  

 

                                                                                 
   

   
 
   

   
                                                                              (8) 

 

Requiring the tunnel wall to be a streamline in the transverse plane provides the following boundary conditions for 

  on the tunnel walls.  

 

                                                                                  ( )                                                                                      (9) 

  

Equation 4 for the induced drag is a wake integral, because the vorticity ( ) is zero outside of the wake. 

The lift is given by the following expression, where y is the distance measured from the tunnel floor. 

 

                                                                               ∬         
 

                                                                        (10) 

 

The sectional lift coefficient can be determined by assuming a planar wake and applying the Kutta-Joukowski 

theorem.
12

  

 

                                                                 ( )  
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                                                            (11) 

 

Where c(y) is the local chord measured in the streamwise direction. The integrands of Eqs. 10 and 11 are zero 

outside of the wake.  

 

3.0 Experimental Methods 

 

This section will discuss the relevant experimental techniques used in this 

study. The model and ice shape simulation are described in Diebold et. al.
9
 and 

will therefore only be briefly discussed here.  

 

3.1 Wind Tunnel 

Wind tunnel tests were performed in the University of Illinois subsonic 

wind tunnel. The wind tunnel is of the open-return type with a rectangular test 

section measuring 2.8-ft by 4-ft. The maximum speed in the empty test section 

was approximately 165 mph (242 ft/s), this corresponds to a Reynolds number 

of 1.5x10
6
/ft. The turbulence intensity in the test section was approximately 

0.1% over the entire operating range.  

 

3.2 Model 

For this study a modified version of the Common Research Model (CRM) 

was used. The CRM was designed by Vassberg et. al.
15

 for the 4
th

 AIAA Drag 

Prediction Workshop. It was chosen for the original swept wing icing study by 

Diebold et. al.
9
 because in addition to representing the wing of a modern 

commercial airliner, the full geometry as well as experimental and 

computational data are publicly available. The model used at the University of 

Illinois was of the reflection plane type and is shown in Fig. 2. The geometry 

was modified slightly from the original CRM to ease construction; these 

modifications are discussed in Diebold et. al.
9
 The relevant geometric 

parameters are given Table 1. 

 

Table 1 Geometric features of the swept wing model. 

AR LE Sweep MAC (ft) Semispan (ft) Taper Ratio 

8.3     0.5817 2.1 0.296 

 

Fig. 2 Wind tunnel model. 
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The model was supported by an internal steel frame and three rapid prototyped components formed the skin. The 

three components were the upper and lower surface and a removable leading-edge. Two leading-edges were built, a 

clean leading-edge and an iced leading-edge. The leading-edge piece was easily removed so that it was possible to 

quickly switch between the two. It should be noted that the model used in this study is not the same model used by 

Diebold et. al.
9
 The original model had minor surface quality problems primarily due to warping of the outer skin. 

The internal structure of the rapid prototyped components was redesigned to improve the surface quality and a 

second model was constructed. As a result, the data presented in the original reference
9
 is not directly applicable 

here because the models were not identical; however, all of the observed trends are the same. While the new model 

is a significant improvement over the original there are still some minor flaws where the leading-edge component 

meets the upper surface components.  

 

3.3 Ice Shape Simulation 
The ice shape used in this study was a simple simulation developed using 2D strip theory discussed by 

Potapczuk et. al.
16

 Several spanwise locations, normal to the leading-edge, along the wing were chosen and at each 

location a two dimensional ice accretion was generated for the local airfoil using NASA’s LEWICE  .0. The 

resulting series of two dimensional ice shapes were blended along the span of the wing and the full three 

dimensional ice shape was then built as part of the removable leading-edge. The icing conditions were chosen to 

produce a reasonably sized ice shape. A more detailed description of the exact procedure used is given by Diebold.
17

 

The conditions input into LEWICE are listed in                              Table 2, and ice shape cross-sections near the 

root, midspan and tip are shown in Fig. 3. It should be noted in Fig. 3, the coordinates are non-dimensionalized by 

the local chord, and therefore it can be seen that the size of the ice shape relative to the local chord increases 

significantly from root to tip.  

 

                             Table 2 Icing conditions used to generate ice shape simulation.  
Time (sec) V∞ (mph) LWC (g/m

3
) δ (μm) Temp (F) 

2400 205 1 30 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Wake Survey  
The five-hole probe (5HP) used in this study was an Aeroprobe Corp., model PS5-C318-152. The diameter of 

the probe tip was 0.125-inches. The probe was traversed through a plane located at 2x/b = 0.8 downstream of the 

trailing-edge of the tip. The survey extended from approximately 2y/b = 0.10 to 2y/b = 1.05 in the spanwise 

direction. The survey region in the z-direction varied for each case and was chosen to minimize the wake survey 

time by only taking measurements in the wake. The survey area captured the entire wake except for the portion of 

the span from the root to approximately 2y/b = 0.10. This region was avoided due to the influence of the floor 

boundary layer. A variable step size was used depending on where the probe was located. Below the tip vortex 

region the stepsize in the z-direction was 0.125 inches (2Δz/b = 0.0049) and in the spanwise direction 0.25 inches 

(2Δy/b = 0.0099). In the vicinity of the tip vortex (approximately 2y/b > 0.93) the stepsize was 0.125 inches in both 

directions. 

All measurements were made at a Reynolds number of 6x10
5
 based on the mean aerodynamic chord of the 

model. For the clean wing, wake surveys were performed from α = 2º to 10º and for the iced wing α = 2º to 6º. The 

calibration procedure and data reduction process used in this study are described in Diebold.
17

 A basic overview of 

Fig. 3 Ice shape cross-section at several spanwise locations. 

 

2y/b = 0.0 2y/b = 0.54 2y/b = 1.0 
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the data reduction process is given here. After the measurements were made the calibration was applied to determine 

the total and static pressure as well as all three components of velocity. The data were then interpolated onto an 

evenly space grid with a stepsize of 0.125 inches. The velocity was used to calculate the vorticity using a second 

order finite differencing method. Ideally the vorticity and total pressure loss would both be zero outside of the 

viscous wake; however, due to random measurement error this was not the case and it was necessary to identify the 

viscous wake region in the measurement plane. The edge of the wake was found for each spanwise location by 

determining where the derivative of the total pressure loss with respect to the z-coordinate exceeded a certain 

threshold. This method was very effective at identifying the edge of the wake, and the final result was not 

significantly sensitive to the value of the threshold used.
17

 

With the wake region identified the integrations in the lift and drag equations could be performed over the 

wake. The axial velocity and total pressure loss were used to calculate the profile drag using Eq. 3, and the lift was 

calculated using Eq. 10. The boundary condition for the Poisson equation, Eq. 8, must be applied on the tunnel 

walls. The computational domain was extended to the side walls and the ceiling of the tunnel; however, since no 

measurements were made below 2y/b = 0.10 the boundary condition was applied directly to this edge of the 

measurement plane. Note that outside of the wake, Eq. 8 reduces to Laplace’s Equation because      . See 

Diebold
17

 for a discussion of the numerical method used to solve Eq. 8. Finally, the induced drag is calculated from 

Eq. 4. The lift and drag calculated from the wake survey data was corrected for tunnel wall effects using the same 

procedure as for the force balance measurements.
17

 

 

4.0 Results and Discussion  

 

Before presenting the wake survey results the general flowfields of the clean and iced wing will be briefly 

discussed. As mentioned above, the model used in this study is an improved version of the model used by Diebold 

et. al.
9
 The geometry was the same but the surface quality of the model used for this paper was improved. Since the 

models were not the same, the data presented here is not identical to the previous data; however, many of the trends 

of flowfield features are the same. Therefore only a brief discussion of the flowfield will be given and more detail 

can be found in Diebold et. al.
9
 and Diebold.

17
 

The surface oil flow results for the clean wing at Re = 6x10
5
 for several angles of attack are shown in Fig. 4. It 

should be noted the bright streaks seen at roughly 30% and 70% semispan were due to small imperfections where 

the removable leading-edge met the upper surface. There are several important flowfield features seen in the oil. 

First, as the angle of attack increased the oil flow indicated increasing spanwise flow along the surface due to the 

increasing strength of the spanwise pressure gradient resulting from the wing sweep. Beginning at α = 4.4º an oil 

accumulation line was seen near the leading-edge running along most of the span. This line indicated flow 

separation and the formation of a small leading-edge vortex; this is similar to a laminar separation bubble on an 

airfoil but the vortex is three dimensional. The clean wing stalled as a result of the flow on the outboard sections 

failing to reattach. The separated shear layer rolled up to form a large leading-edge vortex that was shed into the 

wake, this flowfield is seen in the image for α = 10.7º. The flow on the inboard sections of the wing remained 

attached while outboard of the leading-edge vortex the flow on the surface is reversed and these sections are stalled. 

The flowfield images for the iced wing are shown in Fig. 5. The flowfield of the iced wing was substantially 

different due to flow separation from the tip of the ice shape. Below stall, the separated shear layer rolled up to form 

a leading-edge vortex that reattached to the surface of the wing along the entire span. In Fig. 5, the reattachment line 

of the vortex has been highlighted. As the angle of attack increased the size of the leading-edge vortex increased. 

This was very similar to the behavior of a separation bubble behind a horn ice on an airfoil. The leading-edge vortex 

continued to increase until if failed to reattach along the outer sections of the wing as seen at α = 6.5º. The surface 

oil flow of the stalled iced wing was similar to that of the stalled clean wing; the flow on the inboard sections was 

still attached while the outboard sections were stalled. The structure of the leading-edge vortex is described in more 

detail by Diebold et. al.
9
 An important feature to notice is that in general, the size of the leading-edge vortex relative 

to the local chord increased along the span. This was very noticeable at α = 5.5º, where the flow quickly reattached 

behind the ice shape near the root, but in the tip region the leading-edge vortex occupied nearly the entire chord. The 

significance of this observation will be discussed below. 
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α = 2.3º α = 4.4º α = 6.5º 

α = 8.6º α = 10.7º 

Fig. 4 Surface oil flow for the clean wing at several angles of attack. Re = 6x10
5
 

Fig. 5 Surface oil flow for the iced wing at several angles of attack, with the reattachment line 

highlighted. Re = 6x10
5
 

α = 3.3º 

 

 

α = 5.5º 

 

α = 6.5º 

 

α = 2.3º 

 

 

 

 

α = 4.4º 
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Figure 6 compares the total lift and drag measured by the force balance and wake survey for the clean and 

iced wing at Re = 6x10
5
. Comparing the force balance data of the clean and iced wing it can be seen that below stall 

the ice caused a small decrease in lift for a given angle of attack and a significant increase in drag. The increase in 

the minimum drag coefficient due to the ice was 81.1% while at a lift coefficient of 0.5 the increase in the drag 

coefficient was 69.7%. The clean wing stalled at an angle of attack of approximately 9.7º while the iced wing stalled 

at approximately 6.0º. The ice significantly changed the behavior of the lift curve after stall. For the clean wing the 

lift was nearly constant after stall, but the lift of the iced wing continued to increase but the slope was reduced.  

Comparing the force balance measurements and the wake survey results it can be seen that the wake survey 

method was able to accurately determine the lift and drag. The average error, relative to the balance, in the lift 

calculated from the wake data was 3.05% and 2.3% for the clean and iced wing, respectively. For the drag, the 

average error was 14.6% and 13.3% for the clean and iced wing, respectively. While the error in the drag was 

relatively large, it can be seen in Fig. 6b that the drag curve determined from the wake survey follow the curve from 

the force balance measurements very well, but the wake survey consistently under predicted the drag. A possible 

explanation for this was that the inboard 10% of the wake was not surveyed and therefore the drag contribution from 

this region would not have been captured. Overall the wake survey was able to accurately capture both the lift and 

drag including the effects of stall.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 shows the lift coefficient versus the decomposed profile and induced drag components for the clean 

and iced wing. The lift coefficient and drag coefficients were determined from wake survey data. The results show 

that, for a given CL, the profile drag of the iced wing was significantly higher than for the clean wing. Over the range 

of CL’s shown the ice shape more than doubled the profile drag. This was expected given the large region of 

separated flow behind the ice shape seen in the oil flow visualization. It can also be seen in Fig. 7 that as CL was 

increased, the profile drag of the iced wing increased much faster than for the clean wing. This rapid rise in profile 

drag was due to the increasing size of the leading-edge vortex on the iced wing as seen in Fig. 5. The induced drag 

was not significantly influenced by the presence of the ice shape. Figure 7 shows that the curves of CL vs. CDi of the 

clean and iced wing almost exactly coincided for CL < 0.55. As a result, for a given CL below iced wing stall, the 

increase in drag due to the ice shape was nearly entirely due to a rise in the profile drag. Figure 7 also shows that the 

majority of the drag rise at stall, for the clean and iced wing, was due to a rise in the profile drag. These results show 

that the primary effect of the ice on the drag was to increase the axial momentum loss as opposed to changing the 

amount of streamwise vorticity shed into the wake.  

 

 

 

 

Fig. 6 Comparison of lift (a) and drag (b) from the balance and wake. Re = 6x10
5
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Figure 8 shows the spanwise distributions of the lift coefficient as well as the total drag, profile drag and 

induced drag coefficients for the clean and iced wing at α = 4.4º. Note that because wake surveys were only 

performed at a few angles of attack, it was not possible to compare lift and drag distributions of the clean and iced 

wings for the same CL. At α = 4.4º, total CL and CD of the clean wing measured by the force balance were 0.522 and 

0.027 respectively. For the iced wing at α = 4.4º, total CL and CD were 0.5070 and 0.042 respectively. Over nearly 

the entire span, the local lift coefficient was decreased, Fig. 8a, and the drag coefficient was increased, Fig. 8b, by 

the presence of the ice shape. It can also be seen that the largest differences in the local lift and drag coefficients 

occurred outboard of approximately midspan. This was a consistent trend seen for all angles of attack; when the ice 

was present the local aerodynamic penalties were greater on the outboard sections of the wing. As discussed above 

this was also seen in the oil flow images, Fig. 5, where the size of the recirculation region occupied a larger 

percentage of the chord on the outboard sections of the wing. It was seen in Fig. 3 that the size of the ice shape 

relative to the local chord was much larger for the outboard sections of the wing, and this likely plays in important 

role in the ice shape having a larger effect near the tip. In addition to the relative size of the ice shape the spanwise 

pressure gradient may be another factor that led to increased performance degradation for the outboard sections of 

the wing. The spanwise flow, which results from the spanwise pressure gradient, acts as a form of boundary layer 

suction for the inboard sections making these sections more resistant to separation and possibly promoting 

reattachment of the separated shear layer.
18

  

Figures 8c and 8d show spanwise distributions of the profile and induced drag. Consistent with Fig. 7, all of the 

increase in drag due to the ice shape was a result of an increase in the profile drag. Figure 8d shows that differences 

in the induced drag distributions of the clean and iced wing were negligible along most of the span except near the 

tip. Near the tip of the clean wing the change in the lift with respect to the spanwise location was much larger than 

for the iced wing indicating the clean wing was shedding more vorticity into the wake. The 5HP wake surveys of 

Diebold et. al.
9
 showed that the tip vortex of the clean wing was much stronger than the tip vortex of the iced wing 

for nearly identical lift coefficients. This resulted in a large peak in the local induced drag of the clean wing near the 

tip. In addition, the large axial velocity deficit within the tip vortex resulted in peaks in the local profile drag 

coefficient near the tip for both the clean and iced wings. The axial velocity deficit within the iced wing vortex was 

larger due to the entrainment of separated flow into the vortex. This resulted in a larger profile drag coefficient near 

the tip of the iced wing.   

 

 

 

 

Fig. 7 Components of drag for clean and iced wing. Re = 

6x10
5
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The distributions of total, profile and induced drag, Figs. 8b, c and d, show several local peaks along the span. 

These peaks were especially prominent for the iced wing. Figure 9 shows how the peaks in the profile drag 

coefficient of the iced wing at α = 4.4º corresponded to regions of concentrated axial velocity deficit in the wake. 

The contours in the wake represent normalized axial velocity while the vectors represent the crossflow velocity. 

Similarly, peaks in the induced drag coefficient corresponded with regions of concentrated axial vorticity as shown 

in Fig. 10. The peaks in profile and induced drag occurred at the same location. In addition, examining Fig. 8a 

shows that at these same spanwise locations there is a decrease in the local lift coefficient. This indicates a change in 

the local circulation occurred explaining the concentrated regions of shed vorticity. It is not surprising that peaks in 

the drag distributions corresponded to features in the wake since the distributions were determined from wake data, 

but these figures indicate that something is occurring on the surface of the wing that sheds vorticity and generates a 

loss of axial momentum.  

 

c) Profile Drag Coefficient  

 

b) Drag Coefficient  

 

d) Induced Drag Coefficient  

 

a) Lift Coefficient  

 

2y/b

C
l

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Clean

Ice

2y/b

C
d

i

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Clean

Ice

2y/b

C
d

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Clean

Ice

2y/b

C
d

p

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Clean

Ice

Fig. 8 Spanwise distributions of a) Lift coefficient, b) Drag coefficient, c) Profile drag coefficient and d) Induced 

drag coefficient for the clean and iced wing at α = 4.4º. Re = 6x10
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Fig. 9 Correlation between regions of concentrated axial velocity deficit and local peaks in 

profile drag for the iced wing. α = 4º, Re = 6x10
5
 

Fig. 10 Correlation between regions of concentrated axial vorticity and local peaks in 

induced drag for the iced wing. α = 4º, Re = 6x10
5
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Figure 11 is an attempt to relate features in the wake, which correspond to peaks in the local drag coefficients, 

of the iced wing at α = 4.4º to features seen in the oil flow. It can be seen that several of the concentrations of low 

axial velocity in the wake corresponded with local maxima in the size of the leading-edge vortex. This was observed 

for all angles of attack for the iced wing, see Diebold.
17

 While it is unknown exactly why the size of the leading-

edge vortex changed at these locations, it was clear that this had an effect on the local aerodynamic performance. 

When a local maxima in the leading-edge vortex was encountered, the local aerodynamics of this section were 

affected more than the neighboring sections because of the larger percentage of the chord being affected by the 

separated flow. This resulted in a local rise in the pressure drag which is seen as the concentration in low axial 

velocity in the wake and a peak in profile drag. In addition, because of the larger separated region, the lift at these 

sections decreased slightly resulting in vorticity being shed into the wake and a peak in induced drag. 

The low axial velocity region near 2y/b = 0.6, and the corresponding local maxima in drag, was observed in all 

of the wakes for both the clean and iced wing below stall but did not appear to correlate with any feature seen in the 

oil flow. It is possible that this feature may have originated from the lower surface.  

 

The wake survey results were also used to investigate the effects of stall on the clean and iced wing. Figures 12a 

and 12c compare the spanwise distributions of the clean wing lift and drag for an angle of attack just prior to stall (α 

= 8.6º) and just after stall (α = 10.7º), Figs. 12b and 12d compare the distributions of lift and drag for the iced wing  

just prior to stall (α = 5.5º) and just after stall (α = 6.5º). Note the difference in scales for the clean wing figures and 

iced wing figures. Since the stalling angles of attack are sufficiently different between the clean and iced cases a 

direct comparison is not as useful.  

Fig. 11 Correlation between features in the wake and the surface oil flow for the iced wing. α 

= 4º, Re = 6x10
5
 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
IL

L
IN

O
IS

 o
n 

A
ug

us
t 1

4,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
24

5 



13 

American Institute of Aeronautics and Astronautics 

 

Recall from the oil flow images, Figs. 4 and 5, that stall of the clean and iced wing occurred when flow on the 

outboard stations failed to reattach. The separated flow rolled up to form a leading-edge vortex which was shed into 

the wake at approximately 2y/b = 0.6. The flow inboard of the vortex remained attached while outboard the flow on 

the surface was fully reversed. The stalled wing flowfields are described in more detail by Diebold et. al.
9
 The 

effects on the lift distribution can be seen in Figs. 12a and b. For both the clean and iced wing the lift on the inboard 

sections continued to increase through stall, and the lift on the outboard sections decreased significantly due to the 

separated flow. These results explain the behavior of the lift curve after stall as seen in the force balance 

measurements in Fig. 6. For both the clean and iced wing the lift did not decrease as a result of stall. For the clean 

wing, the lift was nearly constant as the angle of attack continued to increase, while for the iced wing the lift 

continued to increase but the slope of the curve had decreased. The wake survey results show that the inboard 

sections of the wing are able to compensate for the loss of lift produced by the outboard sections, and prevent the lift 

from decreasing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Comparison of pre and post stall spanwise distributions of a) Clean wing lift coefficient, b) Ice wing lift 

coefficient, c) Clean wing drag coefficient and d) Ice wing drag coefficient. Re = 6x10
5
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While not shown here, the force balance measurements also showed an increase in the pitching moment 

resulting from stall, see Diebold et. al.
9
 The mean aerodynamic chord of the model was located at roughly 2y/b = 

0.40. Therefore, due to the wing sweep, the sections of the wing that stalled were behind the quarter chord of the 

mean aerodynamic chord as seen in Figs. 12a and b. This resulted in an increased, nose up, pitching moment for the 

model as a result of stall.  

The effects of stall on the drag coefficient can be seen in Figs. 12c and d. Inboard of the separated region the 

distribution of the drag coefficient was relatively unchanged for both the clean and iced wing; however, there was a 

significant increase in the drag of the outboard sections where the flow had separated. Figures 13a and c show the 

spanwise distribution of profile and induced drag on the clean wing pre and post stall, and Figs. 13b and d show the 

corresponding distributions for the iced wing. As was seen in Fig. 7, the drag rise due to stall was primarily due to 

an increase in the profile drag for both the clean and iced wings. The surface flowfield and wake flowfield of the 

stalled wings were discussed in detail by Diebold et. al.
9
 where it was shown that the separated outboard sections 

resulted in a large momentum deficit region in the wake.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) Clean Induced Drag Coefficient  
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Fig. 13 Comparison of pre and post stall spanwise distributions of a) Clean wing profile drag coefficient, b) Ice wing 

profile drag coefficient, c) Clean wing induced drag coefficient and d) Ice wing induced drag coefficient. Re = 6x10
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Figure 7 showed that the total induced drag, unlike the profile drag, did not undergo a rapid increase as the wing 

stalled. Figures 13c and d show that although the total induced drag did not change significantly the distribution of 

induced drag was altered. The separated flow on the outboard sections led to a reduction in the strength of the tip 

vortex resulting in a decreased contribution to the induced drag from the tip section of the wing. This was especially 

apparent for the clean wing. Once the wing stalled, the major contributor to induced drag was the leading-edge 

vortex shed from inboard of the tip. It is also interesting to point out, in Fig. 13c from approximately 2y/b = 0.6 to 

0.65 the induced drag of the clean wing was negative. The rotation of the leading-edge vortex induced an upwash on 

this section of the wing tilting the force vector forward, resulting in a region of local thrust. This thrust from the 

induced velocities was not large enough to overcome the local pressure drag and the total drag contribution of this 

spanwise section was still positive.  

 

5.0 Conclusion  

 

Previous surface pressure and flow visualization experiments
4,9

 have shown that the aerodynamics of swept 

wings with ice are highly three dimensional and complex. When investigating the performance effects of the ice a 

force balance is only capable of providing the total lift and drag. It cannot provide any information regarding the 

breakdown of the different drag components, nor can it provide any information regarding the spanwise variation in 

the local performance characteristics of the wing although the pitching moment can indicate tip stall. Surface oil 

flow visualization provides insight into the spanwise variation of the performance but does not generate any 

quantitative information.  

This paper utilized five-hole probe measurements and a wake survey analysis to determine how the ice effects 

the different drag components and how the local aerodynamics of the wing were influenced by the ice. Drag 

decomposition showed that the leading-edge ice significantly increased the profile drag of the wing while the 

induced drag was reduced slightly. Examining the surface oil flow images, it was determined that this rise in profile 

drag was due to the large leading-edge vortex that resulted from flow separation at the tip of the ice shape.  

The spanwise distributions of lift and drag showed that for this particular ice shape, the outboard sections of the 

wing suffered greater performance degradation than the inboard sections. Decreases in the local lift coefficient and 

increases in the local drag coefficient were larger on the outboard sections of the wing. This was a result of the size 

of the ice shape relative to the local chord as well as the fundamental aerodynamics of swept wings such as the 

spanwise pressure gradient. It was also shown that it is possible to relate features in the spanwise distributions of lift 

and drag to the features seen in the surface oil flow visualization. This provides a more complete understanding of 

how the ice influenced the wing. 

 As the clean and iced wing stalled, the surface oil flow showed a large leading-edge vortex was shed into the 

wake resulting in two distinct regions on the wing. Inboard of the leading-edge vortex the flow remained attached 

while outboard of the vortex the flow was fully separated. The spanwise distributions of lift showed that while the 

wing stalled, the lift on the inboard sections continued to increase and compensated for the loss of lift on the 

outboard sections preventing a decrease in lift due to stall.  

Information about the effects of ice on the local aerodynamics of a wing can be very valuable from an aircraft 

safety point of view. Lynch and Khodadoust
1
 stress the importance of the critical spanwise location along the wing. 

The location on the wing that is most sensitive to ice. The wake survey method can help identify critical regions 

along the wing.  
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