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Abstract 
 

 
A future air traffic management system capable of rerouting aircraft trajectories in real-

time in response to transient and evolving events would result in increased aircraft 

efficiency, better utilization of the airspace, and decreased environmental impact.  

Mixed-integer linear programming (MILP) is used within a receding horizon framework 

to form aircraft trajectories which mitigate persistent contrail formation, avoid areas of 

convective weather, and seek a minimum fuel solution.  Areas conducive to persistent 

contrail formation and areas of convective weather occur at disparate temporal and 

spatial scales, and thereby require the receding horizon controller to be adaptable to 

multi-scale events.  In response, a novel adaptable receding horizon controller was 

developed to account for multi-scale disturbances, as well as generate trajectories using 

both a penalty function approach for obstacle penetration and hard obstacle avoidance 

constraints.  A realistic aircraft fuel burn model based on aircraft data and engine 

performance simulations is used to form the cost function in the MILP optimization.   

 

The performance of the receding horizon algorithm is tested through simulation.  A 

scalability analysis of the algorithm is conducted to ensure the tractability of the path 

planner.  The adaptable receding horizon algorithm is shown to successfully negotiate 

multi-scale environments with performance exceeding static receding horizon solutions.  

The path planner is applied to realistic scenarios involving real atmospheric data.  A 

single flight example for persistent contrail mitigation shows that fuel burn increases 

1.48% when approximately 50% of persistent contrails are avoided, but 6.19% when 
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100% of persistent contrails are avoided.  Persistent contrail mitigating trajectories are 

generated for multiple days of data, and the research shows that 58% of persistent 

contrails are avoided with a 0.48% increase in fuel consumption when averaged over a 

year.   
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Chapter 1 

Introduction 
 
1.1 Background 

Air transportation is critical to the world’s infrastructure, economy, and quality of life.  

The impact of aviation on the economy is practically immeasurable due to the many 

indirect and direct influences that affect day-to-day life.  Now more than ever, 

households and businesses rely on the advantages and cost effectiveness of air 

transport.  Commercial aviation is used to facilitate global commerce, transport goods 

and people, and is responsible for countless jobs.  In 2007, civil aviation accounted for 

approximately 12 million jobs, $1.3 trillion of total economic activity, and made up 

roughly 5.6 percent of the U.S. Gross Domestic Product (GDP) [1].  The continued 

advancement of the global economy is intimately tied to the well being of the air 

transportation system. 

    Aside from the economic benefits, aviation negatively affects quality of life through 

noise and air pollution, land use, and climate change.  Emissions from airport arrivals 

and departures include particulate matter (PM), CO, NOx, and SOx, and a correlation 

between these pollutants and poor health around airports has been observed [2].  

Additionally, aircraft noise has been linked to a number of health effects including 

hearing loss and sleep impairment [3].  The effect of aviation on climate is caused 
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primarily from the emissions of CO2, NOx, and H2O [3], which are a function of the time 

of flight and the rate of fuel burn.   

     Increasing demand for air travel has pushed the utilization of the air traffic system to 

its limits, manifesting itself in a loss of efficiency, degradation of flight safety, and an 

increase in environmental impact.  In addition, increasing fuel prices are straining the 

current economic stability of the air transportation industry.  With a projected threefold 

increase in air traffic by 2025 [4], it is crucial to improve the current air traffic 

management capabilities.  If the air traffic system is not modernized, there is a risk of 

both an economic slowdown and an increase in environmental harm due to more 

delays, fuel consumption, and congestion.  This dissertation encompasses the 

development and application of a path planning algorithm to guide aircraft from 

departure to destination with the objective to minimize environmental impact and 

maximize fuel efficiency. 

 

1.1.1   Aviation and the Environment 

Aviation affects the environment through many different pathways including land use, 

noise pollution, local air quality, and climate.  Currently, its effect on climate is not fully 

understood, but there are concerns that aircraft emissions might play a larger role in 

future global climate change than originally expected [5, 6].  The three largest aviation 

emissions effectors on the climate are as follows: direct emission of greenhouse gases 

such as CO2, emissions of NOx, and persistent contrails [5, 6].  In general, persistent 

contrails are formed when an aircraft passes through an ice-supersaturated region in 

the atmosphere.  Although the absolute consequence of persistent contrails on the 
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environment is not known, there is evidence to suggest an impact exists [7], and it is 

predicted that persistent contrails have a three to four times greater effect on the climate 

than CO2 emissions [8].  

     According to the EPA Aircraft Contrails Factsheet, contrails are line-shaped clouds 

composed of ice crystals that typically form in the upper atmosphere behind jet aircraft 

engines [9].  The lifespan of contrails is short when they are formed in dry air; however, 

when formed in an area of the atmosphere where the air is supersaturated with respect 

to ice, the contrail will persist and grow in terms of its lateral coverage [10].  The growth 

of contrails form a layer of upper atmosphere clouds identified as contrail cirrus.  Line-

shaped contrails and contrail cirrus are composed of ice crystals that reflect shortwave 

solar radiation and trap longwave radiation [11].  The net effect of contrails is thought to 

be a climate-warming effect due to the fact that longwave warming dominates over 

shortwave cooling as a result of the small optical thickness of most contrails observed in 

field measurements [12].  The global impact of contrails is estimated to be 2-8% of the 

global radiative forcing [12].  However, it should be understood that the effect is greater 

in areas of high density air traffic.  

     Another impact on the environment from aviation is increased emissions due to the 

routing of aircraft around thunderstorms.  Thunderstorms are formed when an air mass 

becomes so unstable that convection occurs.  Convective weather is a disturbance to 

the NAS that has significant consequences not only in terms of safety and on-time 

performance [13], but also environmental impact.  Additionally, the accuracy and 

reliability of long-term forecast models for thunderstorms are not good, which cause air 

traffic managers to make conservative decisions in their routing of air traffic.  These 
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conservative decisions result in flight delays, including rerouting aircraft, ground holding, 

and en-route holding; all of which correspond to increased fuel burn, and in turn, more 

emissions [14].  The research described in this dissertation presents a path planning 

algorithm that efficiently routes aircraft around thunderstorms and areas of ice 

supersaturation to minimize both fuel consumption and persistent contrail formation. 

 

1.1.2   Path Planning for Air Traffic Management 

With the current capabilities of the Air Traffic Control system reaching its limits, recent 

research has focused on developing strategies to relieve some of the pressures air 

traffic controllers are facing.  Further research has focused on providing pilots and air 

traffic controllers more information on optimal flight routes around disturbances which 

have the potential to decrease safety and increase the environmental impact of aviation.  

Continuous Descent Approaches (CDA) have been proposed to reduce noise and 

emissions around airports, as well as decrease fuel consumption [15].  En-route traffic 

optimization has been investigated from a collision avoidance perspective [16], where 

the cost is a function of both fuel consumption and system throughput.  The remainder 

of this section will discuss the specifics of path planning research in persistent contrail 

mitigation and convective weather avoidance. 

 

1.1.2.1  Persistent Contrail Mitigation 

Persistent contrails are formed when an aircraft creates a contrail in an ice super 

saturated region.  Airliners fly an average of 15% of their time in areas of ice 

supersaturation [17].  Therefore, it is prudent to devise methods to avoid persistent 
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contrail formation, thereby mitigating the corresponding environmental effects.  The 

avoidance of persistent contrails is a relatively broad research topic, with strategies 

including novel engine designs [18], fuel additives [19], and aircraft design [20].   

     Operational strategies for persistent contrail avoidance have also been proposed.  

Klima showed that heuristic contrail mitigation strategies can reduce persistent contrail 

coverage [21].  For the case of individual rerouting (each aircraft is rerouted 

independently), persistent contrails were reduced 65%-80%.  For the case of weekly 

rerouting (custom routes are changed on a weekly basis), persistent contrails were 

reduced 40%-75%.  The contrail mitigation reroutes computed by Klima were computed 

at the flight condition for minimum drag.  Therefore, to accurately assess the 

cost/benefit trade-off the reroutes were compared to the route that minimized fuel burn 

(regardless of contrail formation).  This comparison resulted in a 55%-85% reduction in 

persistent contrails and a 1%-2% increase in operational costs.  Other strategies 

proposed by Klima include routing aircraft away from the humid tropopause, flying 

routes with less fuel burn, and choosing a more northerly route for transatlantic flights 

[21].   

     Because regions of ice supersaturation are very thin, it has been proposed that 

altitude change is the best method to avoid contrail production.  Mannstein et al. 

showed that small changes in aircraft altitude can significantly reduce the impact of 

contrails [22].  Williams and Noland also assessed the viability of altitude changes on 

contrail formation [23].  They found that restricting cruise altitudes reduced the amount 

of persistent contrails formed, but with a severe fuel consumption cost.  Fichter et al. 

found that contrail coverage could be reduced approximately 45% by flying 6000 feet 
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lower on average with a 6% penalty in fuel burn [24].  Campbell et al. used path 

optimization techniques and found that persistent contrails can be avoided during a 

specific flight for a 2.76% increase in fuel consumption [25], or 1.48% if only 50% of the 

persistent contrails are avoided [26].  This dissertation will assess the viability of these 

methods using optimization techniques based on a realistic aircraft fuel burn model and 

atmospheric data. 

 

1.1.2.2  Convective Weather Avoidance 

Convective weather avoidance research has primarily concentrated on improving 

decision-support tools to aid air traffic controllers in making weather related reroutes.  

Examples of such research include work done by Kuhn and DeLaura [27,28].  An area 

with increasing research interest is in the development of algorithms to aid in 

autonomous avoidance of thunderstorms.  Krozel developed an algorithm to minimize 

route exposure to hazardous weather by taking into account constraints on turn rate and 

aircraft dynamics [29].  Pannequin et. al used a model predictive control approach to 

find optimal trajectories around areas of static weather [30].  Their approach was 

formulated as an optimal control problem and included collision avoidance in addition to 

weather avoidance.  Recently, Nguyen et. al used a heuristic approach to search the 

state space for solution paths around convective weather that minimize heading 

change, altitude change and distance traveled [31]. 
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1.1.3   Path Planning and Optimization Techniques 

Path planning has been studied in many disciplines including robotics, watercraft, 

aircraft, and spacecraft [32-34].  Problems involving autonomous navigation around a 

field of obstacles have been formulated as optimal control problems [35], potential field 

problems [36], and numerical approaches such as pseudospectral methods [37] and 

nonlinear trajectory generator [38] have been studied.  Receding horizon control is 

another technique that has been employed in autonomous path planning research [39].   

Traditionally used in the field of process control, receding horizon controllers solve a 

trajectory optimization problem using different levels of resolution for the near and far 

terms.  In general, this reduces the computational burden of some optimization 

problems by compromising overall optimality. 

     Mixed-integer linear programming (MILP) has been used as a technique in the 

robotics and autonomous navigation fields to find the optimal path through a field of 

obstacles [40-45].  In this approach, obstacles are included as a set of constraints, 

where each constraint defines an edge of an obstacle.  Each obstacle requires a set of 

binary variables for each obstacle edge for each time step, so the size of the problem 

must be controlled for reasonable computation performance.  Unfortunately, MILP does 

not scale well with the number of binary variables in the problem formulation, and it has 

been proved to be NP-hard in the number of binary variables [46, 47].  Several methods 

have been developed to mitigate the computational struggles of MILP optimization.  Earl 

and D’Andrea proposed an iterative algorithm to adjust the optimal route as it 

encountered obstacles [48].  Vitus et al. introduced a method called Tunnel- MILP which 

breaks the problem into three steps that are simpler to solve than the complete problem 
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[49]. Bellingham and Richards formulated the MILP in a receding horizon fashion, which 

effectively reduced the size of the problem by neglecting a detailed optimization around 

obstacles far from the aircraft [50].  Receding horizon MILP has been shown 

experimentally to guide an aircraft around obstacles in an online fashion [51].  Receding 

horizon MILP forms the foundation of the path planning algorithm developed in this 

dissertation. 

 

1.2 Dissertation Outline and Summary of Contributions 

This dissertation presents a path planning framework to deal with trajectory generation 

problems in the presence of multi-scale obstacles.  The problem of interest is the 

environmental impact of aviation, and the proposed algorithm generates an aircraft 

trajectory which minimizes fuel burn while mitigating persistent contrail production, 

seeks the most optimal route around thunderstorms, and avoids collisions with other 

aircraft.  The dissertation is organized as follows, with the major contributions of each 

chapter highlighted: 

 

• Chapter 2 introduces the atmospheric data used to model 

the environment in the path planning chapters of the 

dissertation.  It also discusses contrail formation, and 

provides details on the source of the relative humidity data 

as well as the persistent contrail formation model.  

Convective weather is addressed using an explanation of 
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how the radar data is obtained and how it is used in the 

thunderstorm model. 

 

• Chapter 3 shows the development of a three-dimensional 

path planning problem.  Much of this path planning algorithm 

follows from existing work [40, 41]; however, this chapter 

contributes a much more realistic aircraft performance and 

fuel burn model than previously employed, and analyzes the 

difference between quadratic and linear cost functions.   

 

• Chapter 4 presents a novel cost-to-go formulation that 

allows for the inclusion of soft avoidance constraints in the 

receding horizon MILP.  This chapter steps through the 

development of the algorithm and provides simulation results 

for an example scenario.  An analysis of the algorithm is 

conducted to describe how the running time increases with 

problem size. 

 

• Chapter 5 gives an analysis of how the receding horizon 

controller is sensitive to disturbances of multiple scales in 

the environment.  It looks at the effect of changing planning 

horizon size, execution horizon size, and time step size on 

the overall trajectory performance in the presence of 
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obstacles that are of different scales, and have both hard 

and soft avoidance constraints.  Lastly, a “best” receding 

horizon strategy is proposed, which can successfully adapt 

to a problem with multiple scales in the environment. 

 

• Chapter 6 shows the practical applications of this algorithm.  

The performance of the algorithm is tested as a technique to 

mitigate persistent contrail formation, and the results are 

compared to existing contrail mitigation strategies.  

Additionally, it provides simulation results for multi-scale 

scenarios involving both contrail mitigation and thunderstorm 

avoidance.  Lastly, this chapter presents other practical 

applications for this work including turbulence avoidance, 

sonic boom mitigation, and aircraft icing avoidance. 

 

• Chapter 7 gives a summary of this work, provides 

conclusions, and presents a list of future research 

recommendations. 
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Chapter 2 

Atmospheric Data 

2.1 Introduction 

This chapter explains contrail formation and persistence, and presents sources of 

atmospheric data used for contrail and thunderstorm modeling.  Contrails are line-

shaped clouds that are produced by aircraft engine exhaust at high altitudes.  Once a 

contrail is formed, the evolution of the contrail depends on the ambient temperature and 

amount of moisture in the air.  Thunderstorms are weather events associated with very 

unstable air, high winds, and usually heavy precipitation.  In general, they are caused 

when a moist, unstable atmosphere exists and there is a rising motion, or lifting force in 

the atmosphere.   

 

2.2 Contrail Formation 

According to the EPA Aircraft Contrails Factsheet, contrails are line-shaped clouds that 

typically form in the upper atmosphere behind jet aircraft engines and are composed of 

ice particles [9].  The lifespan of contrails is generally short when they are formed in dry 

air [9], but contrails persist if they are formed in air that is saturated with respect to ice.  

The criteria used to determine contrail formation were developed independently by 

Schmidt and Appleman in 1953, and are now known as the Schmidt-Appleman 
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procedure [51].  The procedure states that a contrail forms when the exhaust and 

entrained air pass through a thermodynamic state that is first saturated with respect to 

water, and then into a state that is saturated with respect to ice.  The contrail persists if 

the ambient air is saturated with respect to ice.  Figure 2.1 illustrates the Schmidt-

Appleman procedure for the case of a persistent contrail [21].  The red dot shows the 

ambient conditions and the contrail factor line represents the states the exhaust reaches 

as it evolves from the engine to the ambient air.  In the example of Fig 2.1, the red line 

enters the area of water saturation (contrail forms) and terminates with ambient 

conditions in the area of ice saturation (contrail persists).  It is interesting to note that the 

slope of the contrail factor line is dependent on the fuel efficiency of the engine which 

creates the exhaust.  Schumann hypothesized, and showed that the more efficient the 

engine, the steeper the slope of the contrail factor line [52].  This means that the more 

modern and fuel efficient engines are more prone to creating persistent contrails than 

engines using older technology.  Figure 2.2 shows that a steeper contrail factor line 

corresponds to a greater likelihood that a contrail is produced [21]. 

     An area in the atmosphere where the air is saturated with respect to ice is called an 

ice supersaturated region (ISSR) and the relative humidity with respect to ice (RHi) in 

this region is greater than or equal to 100%.  In general, ISSRs are have a very large 

lateral extent, but are relatively thin vertically.  It has been observed that regions of ice 

supersaturation are defined by boundaries on the order of 150 km horizontally and 

approximately 500 m vertically [53,54].  Figure 2.3 shows the RHi field over the 

continental US for a specific day at four times.  It has been observed, and can be seen 

in Fig. 2.3 that fields of RHi have slow dynamics compared to other atmosphere 
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phenomena such as thunderstorms.  Additionally, the likelihood that contrails form 

depends on the time of day as well as the time of year.  Stuber et al. found that the 

formation of contrails can be correlated to the diurnal and annual cycle of air traffic [55].  

They found that while night flights account for only 25% of daily flights, they contribute 

60%-80% of the contrail radiative forcing.  Stuber et al. also observed that while winter 

flights only account for 22% of annual air traffic, they contribute 50% of the annual 

contrail formation [55]. 

     Over time, line shaped contrails either dissipate or evolve into a layer of cirrus clouds 

known as contrail induced cirrus [12].  The level of understanding of the physics and 

effect of contrail induced cirrus on climate is low, but it is hypothesized that contrail 

induced cirrus are the dominating impact from contrails [56].  For the purposes of this 

dissertation it was assumed that contrail induced cirrus scales linearly with the number 

of persistent contrails produced, and that their evolution is independent of time, place, 

and the atmospheric conditions surrounding the persistent contrail. 

 

2.3 Relative Humidity Data 

In order to model the formation of persistent contrails, the field of relative humidity with 

respect to ice needs to be known.  Currently, areas of ice supersaturation can be 

extracted from global atmosphere models, but these data are not very accurate.  

Additionally, it is difficult to measure relative humidity at altitudes near cruise due to the 

extremely cold temperatures [12].    This section presents sources of RHi data, and the 

global forecast models that are used in this dissertation. 
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2.3.1   Sources of Data 

Tools such as the Microwave Limb Sounder (MLS) and the Atmospheric Infrared 

Sounder (AIRS) have been used to detect areas of ice super saturation [57, 58].  

However, the data available from these tools lack adequate vertical resolution and 

depth to describe the vertical profile of the supersaturation in the region.  The MOZAIC 

program collected 9 years of data along major flight routes [59].  Additionally, satellites 

have been used to detect contrail formation but not explicitly areas of supersaturation.  

The European Center for Medium-Range Weather Forecasts (ECMWF) provides a 

global model for relative humidity estimates [60].  The Rapid Update Cycle (RUC) is an 

atmospheric prediction system that is principally a numerical forecast model developed 

for users needing short-range weather forecasts [61].  The RUC data have horizontal 

resolutions of 20km, 40km, and 60km.  The vertical resolution of the data is isobaric 

pressure levels ranging from 100-1000mb in 25mb increments. 

     The sources of data for relative humidity at high altitudes are, in general, not suited 

to represent ISSRs for the purpose of path planning.  The ideal data set for this 

research would be a three-dimensional grid of fine vertical resolution.  The MLS, AIRS, 

and MOZAIC data are too sparse to fill the grid required by the path planner.  The 

ECMWF and RUC forecasts provide an adequate grid of data, but the accuracy of the 

data is questionable.  The next section will discuss how the research in this dissertation 

dealt with these issues, and describe the assumptions that were made. 
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2.3.2   Relative Humidity Model 

As stated previously, an accurate relative humidity forecast model does not exist to 

predict areas of ice supersaturation. Additionally, the available RHi datasets are too 

sparse to create the grid of RHi values needed to complete this research.  However, 

ISSRs are observed to have distinct characteristics such as a large lateral area and thin 

vertical profile.  Therefore, if a representative dataset at least emulates these 

characteristics, it can be used to develop a path planner for persistent contrail 

avoidance.  The assumption is that once an accurate forecast model becomes 

available, it can replace the representative dataset, and in turn increase the accuracy of 

the path planner.  It was found that Rapid Update Cycle relative humidity data share 

similar characteristics as observed fields of RHi, and were therefore were selected as 

the representative dataset.  This dataset, albeit inaccurate, provides the necessary 

foundation for the development of the path planning algorithm developed in this 

dissertation. 

     The RUC data have horizontal resolutions of 20km, 40km, and 60km, and a vertical 

resolution of 25mb.  The RUC does not directly output RHi, but it can be calculated from 

the relative humidity with respect to water (RHw) and the environmental temperature.  

This dissertation primarily used archived RUC data from November 17, 2001. 

 Figure 2.3 shows the November 17, 2001 field of RHi at different times.  The red 

areas indicate RHi greater than 100% in the region.  During the time period of 1700Z-

2000Z the RHi field did not change significantly, which is typical.  Also, it should be 

noted that the size of the RHi fields change with altitude.  For MILP implementation, the 
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areas of RHi > 100% were represented as overlapping cuboids.  Figure 2.4 shows a 

RHi field and its three dimensional representation as a set of cuboids. 

 It should be mentioned again that while the RHi estimates from the RUC data are 

representative of areas of supersaturation, the values of RHi in the estimates are 

biased.  This is a result of dry bias in some radiosonde measurements that are used in 

the model [12].  The assumption of this dissertation is that even though the RHi fields 

might not be accurate, they are representative enough that a path planning tool can be 

developed and successfully applied to a more accurate dataset when it comes 

available. 

 

2.4 Convective Weather Data 

Thunderstorms are considered a hazard to flight due to the severe wind shear and 

turbulence associated with their penetration.  The evolution and movement of a 

thunderstorm is still a very active research topic and there exists significant uncertainty 

in forecasted data.  The largest uncertainty in convective forecasts is so called “area 

probability”, which is the probability that a thunderstorm will occur in a specific area at a 

specific time [62].  This uncertainty can cause unnecessary delays in the NAS due to 

conservative decision making by air traffic managers [62].  An on-board trajectory 

planner would ease the impact of this uncertainty, and also provide more efficient routes 

around the storms.   
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2.4.1   Sources of Data 

There are generally two types of convective weather data: radar observations and 

thunderstorm forecasts.  Radar observations are the most accurate form of data, but 

radar data alone can not be used to predict the movement and evolution of a 

thunderstorm.  Thunderstorm forecasts provide a prediction of the movement of a 

thunderstorm, but are not updated as frequently as radar data. 

     The Collaborative Convective Forecast Product is a manually generated 2, 4, and 6 

hour forecast issued every 2 hours and distributed by the National Weather Service 

(NWS) Aviation Weather Center [63].  This forecast provides a graphical representation 

of areas of potential convection, however, it is susceptible to forecasting errors and 

difficulty of translating the forecast information into something usable by human air 

traffic managers for airspace capacity considerations.  The National Convective 

Weather Forecast (NCWF), the Regional Convective Weather Forecast (RCWF), and 

the Terminal Convective Weather Forecast (TCWF) models are automated forecast 

products used at various Air Traffic Control (ATC) facilities [63]. 

     The National Center for Atmospheric Research (NCAR) is responsible for a 

database of radar data called National Convective Weather Detection.  These data are 

obtained using the Vertically Integrated Liquid (VIL) algorithm, which converts radar 

reflectivity to a measure of liquid water content.  VIL can be correlated to a Video 

Integrator and Processor (VIP) rating, which is a discretization of storm strength from 0-

6 [64].  This is commonly seen on radar images as the color coding of thunderstorm 

strength. 
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2.4.2   Convective Weather Model 

The convective weather model developed for this research was designed to provide a 

frequently updated radar picture and a simple model of thunderstorm evolution.  Radar 

data were acquired from NCAR, and the data were converted to VIP ratings 

representing the storm strength.  It has been observed that pilots avoid thunderstorm 

cells with a VIP rating of 3 or greater, so these regions were represented by cuboids, 

and flight was precluded through these areas.  Figure 2.5 is an example of the 

convective weather data used in this dissertation.   

     Storm movement and evolution were predicted with simple model based on the size 

of the thunderstorm cell and its observed movement in the past time step.  This was 

designed to be very simple procedure to ease the computational burden of the on-board 

path planner.  The general procedure can be described as: 

 

1. Enlarge the avoidance area. 

2. Find centroid of each avoidance area. 

3. Project the centroid of each area forward in time based in the movement 

history in the previous two time steps. 

 

The avoidance area is enlarged to add a safety margin to account for uncertainty in the 

forecast model.  The amount the region is enlarged depends on the amount of risk 

allowed by the flight, and this is a user defined input to the path planner.  For the cuboid 

representation used in the dissertation, the centroid is found with Equation 2.1 
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where (xc, yc, zc) is the location of the centroid, and the high and low subscripts refer to 

the maximum and minimum values of the cuboid in the x, y, and z directions.  The 

velocity of the centroid was found with Equation 2.2 
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where (vx,c, vy,c, vz,c) is the velocity of the centroid, and dt is the time step.  The future 

position of the thunderstorm is simply calculated with Equation 2.3 

 ( ) ( )dtvizdtviydtvixzyx czccyccxcicicic ,0,,0,,0,,,, ,,,, ⋅+⋅+⋅+=  (2.3) 

where (xc,i, yc,i, zc,i) is the position of the centroid at time step i, and (xc,0, yc,0, zc,0) is the 

present position centroid. 

 

2.5 Summary 

This chapter presented the atmospheric data used in the path planning algorithm 

developed by this research.  The reported mechanism for contrail formation was 

explained, and sources of relative humidity data were discussed.  Rapid Update Cycle 

data were selected to model relative humidity because the data represented the general 

characteristics of a relative humidity field, albeit inaccurately.  An assumption inherent in 

this dissertation allows for the fact that even though the current models of RHi fields 

may not be accurate, they are representative enough that a path planning tool can be 

developed, and successfully applied to more accurate data when it comes available. 
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     Convective weather was discussed in terms of both radar reports and radar 

forecasts.  A simple thunderstorm propagation model was presented to predict the 

evolution of a storm with a specified margin of safety.  The simplicity of this model is 

required due to the on-board nature of the path planning algorithm, which requires 

computation to adhere to real time constraints. 

 

 

 

 

 

 

 



 21

  
Figure 2.1.  Illustration of the Schmidt-Appleman procedure [21]. 
 

 
Figure 2.2.  Illustration of the Schumann hypothesis [21]. 
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Figure 2.3  Fields of RHi at Different Times on November 17, 2001, RUC data. 
 

Figure 2.4.  Cuboid representation of RHi data for implementation into the MILP. 
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Figure 2.5.  Convective Weather Patterns at Different Times on May 7, 2008.  The yellow 
areas indicate VIP ≥ 3. 
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Chapter 3 

Three-Dimensional Trajectory 
Generation 
 
3.1 Introduction 

This chapter presents a three-dimensional path planning algorithm based on mixed-

integer programming (MIP).  This approach is similar to existing trajectory planning 

algorithms [40, 41] which use receding horizon mixed-integer linear programming 

(MILP) to generate a trajectory in an environment of obstacles.  MIP is well suited to the 

problem due to its ability to directly include logical constraints for obstacle 

representation, and because it employs an optimization framework that can easily 

handle the dynamical and performance constraints used in the aircraft and fuel burn 

models.  To improve the computational performance of the optimization, a receding 

horizon strategy was employed.  The receding horizon controller solves the MILP for a 

predetermined number of time steps toward the destination and the remaining trajectory 

is accounted for with a cost-to-go path approximation.  The main contribution of the 

chapter is the application of MIP to a large-scale aircraft path planning problem with a 

realistic aircraft fuel burn and performance model.  The aircraft fuel burn model is based 

on real aircraft data and engine simulations, and is more advanced than previous 

models in the MIP framework.  Additionally, the difference between linear and quadratic 

cost functions is explored through simulation. 
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3.2 Aircraft Modeling 

The accuracy of an optimization is directly related to the quality of the models used in 

the calculations.  The objective of this path planning problem is to find minimum fuel 

trajectories around disturbances in the environment such as persistent contrail 

formation and thunderstorms.  The cost function in this optimization is primarily a 

function of aircraft fuel burn, which is modeled by the combination of an aircraft 

performance model and an engine performance model.   

     Aircraft fuel burn is a complicated quantity that is dependent on many states and 

aircraft-specific parameters.  In practice, fuel burn is calculated based on flight test data 

taken over a wide range of operating conditions.  In lieu of these data, fuel burn can be 

approximated with a limited set of aircraft and engine data.  Previous studies have 

predicted fuel burn using either the FAA’s System for Assessing Global Emissions 

(SAGE) [21], a modified version of SAGE [65], or a quadratic approximation based on 

velocity [66].  Existing works using the MILP framework have approximated fuel burn by 

the 1-norm of the aircraft acceleration [43, 44].  This research uses aircraft data and 

engine performance software to approximate fuel burn over the cruise flight envelope as 

a function of altitude, velocity, and acceleration.  This method is a more accurate model 

than the 1-norm of acceleration or quadratic approximation of velocity, but is still simple 

enough to implement in the mixed-integer programming framework.   

 

3.2.1   Aircraft Performance Model 

The aircraft performance model used for this research is intended to emulate the en-

route performance characteristics of medium-range aircraft such as the Boeing 737 and 



 26

Airbus A320.  The following restrictions are placed on the altitude and Mach number to 

confine aircraft performance to the cruise envelope, as seen in Eq. 3.1 

  ftzft
Ma

000,42000,28
82.070.0

≤≤
≤≤

 (3.1) 

where Ma is the Mach number and z is the altitude.   

 To compute the performance, the drag coefficient is extracted from drag polar data 

[67, 68] for a range of Mach numbers, altitudes, and weights.  Figure 3.1 depicts the 

drag polar data for flight conditions within the range of Eq. 3.1.  The thrust required is 

calculated for the range of Mach numbers and altitudes inside the cruise flight envelope, 

and for three weights, each representing the aircraft weight at a different fuel state along 

the flight path.  The thrust required for level, steady flight is calculated with Eq. 3.2 

 SCqT Dreq ⋅⋅=  (3.2) 

where q is dynamic pressure, CD is the drag coefficient, and S is the planform area.  

Figure 3.2 shows how the thrust required changes with altitude and Mach number for a 

given weight.   

     During cruise, commercial aircraft frequently change altitude using the flight level 

change mode of the flight management system, and therefore it is assumed that the 

thrust is set to maximum climb thrust during climb, and idle during descent. The climb 

performance is limited by a maximum rate of climb constraint. The maximum rate of 

climb (R/Cmax) is determined with Eq. 3.4  

 
( )

W
TTV

CR reqA −= ∞
max/  (3.4) 
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where V∞ is the velocity of the aircraft, TA is the thrust available, Treq is the thrust 

required in level flight at this flight condition, and W is the weight of the aircraft.  The 

thrust available at altitude is approximated by the Eq. 3.5 [68] 

 ( )
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AA TT ⎥
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⎢
⎣

⎡
⋅=

0
0 ρ

ρ
 (3.5) 

where (TA)0 is the thrust available at sea level, ρ0 is standard sea-level density, and m is 

a thrust factor.  Figure 3.3 shows the maximum rate of climb generated by the 

performance model.  The thrust available at sea-level was obtained from the engine 

model, which is presented in the next section, and the thrust factor was approximated to 

be 0.8.  The absolute ceiling for each weight is equal to the x-intercept of the lines in the 

figure.   

 

3.2.2   Engine Performance Model 

Engine performance is obtained with the Engine Performance Analysis Program v4.2 

[69]. This program uses a set of engine parameter inputs and flight conditions (Mach 

number, altitude) to compute curves of Thrust Specific Fuel Consumption (TSFC) vs. 

engine thrust.  The engine is assumed to be a high-bypass turbofan, and the software 

input parameters are given in Table 3.1.  The program was run for the range of Mach 

numbers and altitudes given by Eq. 3.1.  The engine performance data are tabulated for 

use in the aircraft fuel burn model. 

     Figure 3.4 shows the relationship between TSFC and altitude for different Mach 

numbers in steady, level flight.  The TSFC trends are as expected with lower TSFCs 

corresponding to the higher altitudes and lower Mach numbers.  The outputs of the 
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engine performance model were combined with the outputs of the aircraft performance 

model to approximate the relationship between fuel burn, Mach number, and altitude.   

 

3.2.3   Fuel Burn Model 

The fuel burn model developed by this research is a combination of the aircraft 

performance and engine performance models presented previously.  Aircraft fuel burn is 

calculated for a range of Mach numbers, altitudes, and weights using Eq. 3.6 

  TSFCTW reqf ⋅=  (3.6) 

where Wf is the fuel flow, Treq is the thrust required,  and TSFC is found from the engine 

performance model.  Figures 3.5 and 3.6 show the relationship of altitude and velocity 

with fuel flow, respectively, for an aircraft weight of 145,000 lb with engine and drag 

characteristics described above. 

Figures 3.5 and 3.6 show the highly nonlinear nature of fuel burn.  To simplify this 

behavior, a nominal flight condition is selected using Mach number and altitude for a 

given weight, and the change in fuel burn around the nominal flight condition is 

modeled.  The nominal cruise Mach number is selected to be 0.78 based on typical 

cruise speeds for the type of aircraft considered in this model [70].  The nominal cruise 

altitude is selected based on the fuel-optimal altitude for a Mach number of 0.78 and for 

a given weight.  For a true minimum fuel solution, the nominal altitude should increase 

continuously as fuel is burned, resulting in a cruise climb flight profile. However, this 

procedure is generally not performed in practice because of air traffic control 

restrictions. Instead, a step-climb procedure is used, where the altitude is increased in 
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discrete steps along the flight path [71].  This fuel burn model emulates a step climb by 

using three nominal cruise altitudes based on the optimal altitude for three aircraft 

weights.  The initial weight is assumed to be 145,000 lbs, and the subsequent weights 

are 135,000 lbs and 125,000 lbs, which correspond to optimal altitudes of approximately 

34,000 ft, 36,000 ft, and 38,000 ft, respectively.  Table 3.2 gives the nominal flight 

conditions used to develop the model. 

Figures 3.7 and 3.8 show the sensitivity of fuel flow to changes in altitude and 

velocity around the nominal flight conditions, respectively.  In Fig. 3.7, the general trend 

of all three curves is that fuel burn increases for flight at altitudes both above and below 

the nominal altitude.  At altitudes below the nominal altitude, the fuel burn approximation 

in Eq. 3.6 is driven higher by increasing TSFC.  At altitudes above the nominal altitude, 

higher thrust is required to maintain level flight, and in turn increases fuel burn.  The 

trends exhibited in Fig. 3.8 are as expected, where higher velocity corresponds to 

higher fuel consumption.  These curves were converted to piecewise linear and 

quadratic functions for implementation into the path planning algorithm.  The cost 

function is described in more detail in Section 3.3.3, and a quantitative comparison is 

given in Section 3.4. 

It should be noted that this aircraft fuel burn model is developed assuming level, 

steady flight in the nominal flight conditions.  This is a valid assumption considering the 

highly unaccelerated nature of en-route commercial operations.  Accelerated flight is 

modeled in a first order fashion, and is described in more detail in Chapter 3.3.4.1.  

Climbs and descents were modeled with the assumption that commercial aircraft 

frequently change altitude using the flight level change mode of the flight management 
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system, and therefore it was assumed that the thrust is set to maximum climb thrust 

during climb, and idle during descent. 

 

3.3 Path Optimization 

Recently, the field of path optimization has blossomed due to the increased use of 

Unmanned Aerial Vehicles (UAVs) and the desire for more autonomy in the National 

Airspace System (NAS).  Existing path planning research has been primarily concerned 

with the two dimensional motion of an aircraft or ground vehicle subject to relatively 

simple cost and performance constraints.  This section describes the formulation of a 

three-dimensional path planning algorithm that is subject to a realistic aircraft model and 

capable to be solved on-board an aircraft in real time. 

 

3.3.1   Mixed-Integer Programming 

The field of path planning is broad and many techniques have been studied in the 

literature [29-45].  Of these techniques, mixed-integer programming (MIP) shows the 

most promise as a technique for the objective of this research.  This is because MIP can 

directly incorporate logical constraints such as obstacle avoidance, and provide an 

optimization framework that employs dynamic constraints such as turn and maximum 

rate of climb limitations [40, 41].  The MIP framework allows both linear and quadratic 

cost functions, as long as the quadratic term is positive semi-definite.  A MIP 

optimization with a linear cost is called a mixed-integer linear programming (MILP) 
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problem, and with a quadratic cost is called mixed-integer quadratic programming 

(MIQP) problem.  The basic format of a MILP optimization is given as Eq. 3.7 

 

binary          
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where x is composed of x1 and x2, and x1 is a continuous variable bounded by l and u, 

and x2 is a binary variable.  The vector c describes the cost, and the matrix A and vector 

b express the system constraints.  The basic form of a MIQP is given as Eq. 3.8 

 

binary          
         

 :subject to
2
1 :minimize

2

1

x
uxl

bAx

xdQxx TT

≤≤
≤

+

 (3.8) 

where x is composed of x1 and x2, and x1 is a continuous variable bounded by l and u, 

and x2 is a binary variable.   The matrix Q describes the cost and must be symmetric 

and positive semi-definite.  The matrix A and the vector b express the system 

constraints. 

     The MILP problem has been proven in the literature to be NP-Hard in the number of 

binary variables [46, 47], which informally means that the problem is at least as hard as 

one that is NP-Complete, where the solutions to NP-Complete problems can be verified 

in polynomial time.  The significance of this is that as the number of binary variables in 

the problem grow, the computation time increases dramatically.  To mitigate the 

computational burden imposed by increasing problem size, a receding horizon 
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approach is used to break the MIP into a detailed trajectory optimization close to the 

aircraft and a coarse cost-to-go approximation to the destination. 

 

3.3.2   Receding Horizon Control 

The basic approach of receding horizon control is to utilize a model of the system to 

forecast future behavior and to make control inputs that optimize the performance 

objectives and satisfy the constraints.  The optimization is repeated online as new 

information about the aircraft states and the environment is obtained.  Each online 

optimization uses information on the current environment, which is continually updated 

based on the latest observations of the aircraft. 

     Receding horizon control is also known as model predictive control (MPC), and has 

been successfully applied to the field of process control [72, 73] where the dynamics of 

the system are typically on the order of minutes or hours.  Recent advances in 

computational power have enabled the application of receding horizon control to 

systems with faster dynamics, such as cars and aircraft [74].   

     The primary purpose of receding horizon control in this dissertation is to reduce the 

computational burden of the optimization.  To do this, the receding horizon controller 

truncates the optimization at a finite horizon and uses a terminal penalty, also known as 

cost-to-go, to represent the remaining trajectory.  This is a technique of multi-resolution 

planning, where the path planner optimizes in detail over the local horizon and connects 

the detailed trajectory to a more coarse approximation to the goal.  The trajectory is 

broken into three distinct segments: the detailed trajectory, the line of sight, and the 

cost-to-go.  The detailed trajectory is a high resolution optimization of the trajectory 
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subject to the realistic aircraft model presented earlier, and also called the planning 

horizon.  The cost-to-go is a coarse approximation of the trajectory through a cost grid, 

and the line of sight connects the end of the detailed trajectory to the start of the cost-to-

go.  The Figure 3.9 shows the segments of the receding horizon trajectory in detail, with 

the planning horizon represented by the green line, the line-of-sight by the blue line, and 

the cost-to-go by the magenta line. 

     The receding horizon controller solves the MIP for a predetermined number of time 

steps toward the destination and the procedure is repeated, with the remaining 

trajectory accounted for with the cost-to-go, until the destination is reached.  Compared 

to non-receding horizon MIP, which generates a full detailed trajectory up to the 

destination, this approach does not waste computational resources on a detailed plan in 

the far future, where not much information is available and large changes in the 

environment are possible.  

 

3.3.3   Constraints and Limitations 

This section describes the construction of the constraints and limitations imposed in the 

MIP optimizations.  Specifically, it discusses the implementation of the atmospheric 

model introduced in Chapter 2 and the aircraft fuel burn and performance model 

established in Chapter 3.2.  The order of the section is as follows: first, the dynamical 

and aircraft performance constraints are discussed in detail.  Then, the obstacle 

avoidance constraints are explored and the section concludes with a detailed 

explanation of the implementation of the cost function. 
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3.3.3.1  Dynamical and Aircraft Performance 

The dynamics of aircraft are governed by coupled non-linear differential equations, and 

are therefore very difficult to implement in an on-board path planner.  To simplify the 

equations of motion, the aircraft is treated as a simple point mass subject to realistic 

aircraft performance limits and constraints.  While this method is not the most accurate, 

it provides a good representation of the flight envelope, and occurs commonly in path 

planning [75]. 

 The dynamical constraints presented here are that of a double integrator and the 

evolution of the aircraft states is governed by Eq. 3.9 

 )()()1( kbkAk uxx +=+   (3.9) 

where, 
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The vector x represents the position and velocity of the aircraft, the vector u represents 

the acceleration, k is the discrete time index, and dt is the size of the time step.  The 

matrix I3 represents a 3x3 identity matrix, and u is taken along the (x,y,z) basis. 

 The calculation of the magnitude of the velocity from the individual velocity 

components requires the square root of the sum of the squares, which is obviously a 

nonlinear operation and inadmissible in MILP.  Therefore an accurate method is needed 

to approximate the magnitude of velocity because fuel burn is largely dependent on the 
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speed of the aircraft.  The following procedure provides a linear approximation of the 

velocity and acceleration for implementation into the MILP [48] 
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where V and A are the velocity and acceleration magnitudes respectively, M is the 

number of faces of the polygon, w is an integer in the set of integers from 1 to M, bv[k,w] 

are binary variables, and R is a large constant.  M is a user defined variable where the 

approximation accuracy increases with M.  Equation 3.12 is necessary to include non-

convex constraints on minimum velocity.  Figure 3.10 shows how the approximation fits 

inside of the velocity circle.  It should be noted here that the velocity and acceleration 

magnitude approximations only account for motion in the x-y direction.  Motion in the z-

direction is assumed to be very small compared to motion in the x-y direction, and is 

treated separately.  Additionally, V and A are bounded to constrain the optimization 

within a realistic flight envelope, as given in Eqs. 3.13 and 3.14 

 maxmin VVV ≤≤   (3.13) 

 maxAA ≤   (3.14) 
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The vertical velocity is constrained by a rate of climb limit, which is a function of 

altitude.  The maximum rate of climb is defined by Eq. 3.15 

 01max ββ =+ zRC   (3.15) 

where RCmax is the maximum rate of climb, and βi is computed in the aircraft model.  

The rate of climb is constrained by the maximum rate of climb using Eq. 3.16 

 0max ≤− RCvz   (3.16) 

The maximum descent rate is represented by a lower bound on the vertical velocity 

and is chosen to be a value consistent with normal operation of commercial aircraft [68]. 

 

3.3.3.2  Avoidance Constraints 

As discussed in Chapter 2, persistent contrails form in specific areas of the atmosphere 

where the relative humidity with respect to ice is greater than 100%.  Additionally, 

aircraft are forced to divert around thunderstorms that are above a certain strength and 

altitude.  These disturbances to the National Airspace System are represented as 

cuboids in the optimization, and flight through these cuboids is precluded.  One benefit 

of the MIP framework is that it can handle hard avoidance constraints, which strictly 

enforce that all feasible trajectories remain outside of the cuboid. 

     Persistent contrail, and thunderstorm avoidance is accomplished using hard 

constraints of the following form: 
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where B defines the 6 planes that compose the cuboid which represents an area of RHi 

> 100%.  The variable bo,i is a binary variable that is either 1 or 0 depending on whether 

constraint i is active.  Eq. 3.18 ensures that all 6 constraints are never all active at the 

same time, meaning that the aircraft stays out of the area of RHi ≥ 100%, or the 

thunderstorm cell.   

 

3.3.4   Cost Function 

As shown in Chapter 3.2, aircraft fuel burn is extremely nonlinear by nature, and in turn, 

difficult to implement in a linear structure.  In a cruise flight condition, the main drivers of 

fuel burn are velocity, altitude, and weight.  If climbing or descending, the throttle setting 

is also a factor.  To reiterate the assumptions used in Section 3.2, the effect of Mach 

number, altitude, and throttle setting were assumed to be decoupled around a nominal 

flight condition and weight.  Also, the effect of weight was accounted for by changing the 

nominal flight condition at pre-specified intervals of time. The time intervals were 

selected to correspond to the approximate time the aircraft weight reaches 135,000 lbs 
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and 125,000 lbs during the flight.  This section will discuss the cost function of the 

detailed trajectory optimization and then the cost-to-go. 

 

3.3.4.1  Detailed Trajectory 

The fuel burn curves given in Figs. 3.7 and 3.8 were written as a set of piecewise linear 

functions.  The piecewise linear representation of fuel burn as a function of weight is 

described by Eqs. 3.19 and 3.20 

 ( ) ( )121 ,...,max +++= iia zzWf µµµµ     for i = 1,3,5,… (3.19) 

 ( ) ( )121 ,...,max +++= iiv VVWf σσσσ     for i = 1,3,5,… (3.20) 

where fa(W) and fv(W) are the fuel burn associated with altitude and velocity, 

respectively, W is weight, and µi and σi determine the piecewise linear function.  These 

equations are written in MILP format as follows: 
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It should be noted that the coefficients µ and σ depend on the aircraft weight; therefore 

these equations are updated whenever the aircraft weight is updated. 
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 Another type of fuel burn approximation is a quadratic function.  The quadratic 

representation of fuel burn as a function of weight is given by Eqs. 3.23 and 3.24 

 ( ) 32
2

1, ηηη +−= zzWf aQ  (3.23) 

 ( ) 65
2

4, ηηη +−= VVWf vQ  (3.24) 

where fQ,a(W) and fQ,v(W) are the altitude and velocity costs, respectively, and ηi is taken 

from the aircraft model.  A quadratic cost function better represents the data; however, 

the optimization must be solved with MIQP, which is more computationally demanding 

than MILP.  A study showing the results of a tradeoff between the performance and 

computation times of different types of cost functions is given in Chapter 3.4. 

 The effect of climb and descent on fuel burn was assumed to be decoupled from the 

effects of velocity, altitude, and weight.  During cruise, commercial aircraft frequently 

change altitude using the flight level change mode of the flight management system, 

and therefore it was assumed that the thrust is set to maximum climb thrust during 

climb, and idle during descent.  The climb and descent state was characterized with Eq. 

3.25 

 
descendz

bcz

bRv
bRv
⋅≤−

⋅≤ lim
 (3.25) 

where vz is the vertical velocity, R is an arbitrarily large constant, bclimb is a binary 

variable to indicate climb, and bdescend is a binary variable to indicate descent.   
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The last component of the cost is the fuel burn associated with acceleration, which is 

determined under the assumption that the fuel burn linearly increases with acceleration.  

In full, the cost function for the detailed trajectory optimization is written as Eq. 3.26 

 ( )∑
=

+++++=
pN

i
descendidescenddescendibcitermifiivia fbfbfbAffJ

1
,,lim,,,,  (3.26) 

where fa and fv are the fuel cost associated with altitude and velocity, respectively, A is 

acceleration, fclimb is a weighting associated with maximum climb thrust, and fdescend is a 

weighting associated with idle.  Again, it should be noted that fa and fv change with 

aircraft weight, which is updated periodically during the receding horizon optimization.  

The total trajectory cost includes the detailed trajectory cost (Eq. 3.26), and the cost-to-

go, which is presented in the next section.   

 

3.3.4.2  Cost-to-Go 

As mentioned previously, the detailed trajectory is planned until the end of the planning 

horizon, and the remaining trajectory to the goal is approximated by the cost-to-go 

function.  The cost-to-go function approximates the fuel required to go from the end of 

the planning horizon to the goal by creating a cost map containing the fuel to travel from 

each node in the map to the goal, and an additional fuel cost to connect the detailed 

trajectory to the cost map.   

The cost map, Gij, is a measure of the cost between nodes i and j, and is found using 

a visibility graph weighted by the distance between nodes and a cost associated with 

the altitude of the nodes. The nodes in the cost map are made up of the vertices of the 
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obstacles in the environment, in addition to the aircraft position and the destination 

position. 

To assign a realistic cost approximation to the visibility graph, it was weighted by a 

two part function.  The first part approximates the fuel burn between the nodes based 

on the Euclidian distance between the nodes, and the second part is an altitude penalty 

based on a quadratic altitude function evaluated at the average altitude of the 

connecting nodes.  Therefore, the cost to travel between nodes i and j is given by Eqs. 

3.27 and 3.28 

 32
2

12
αααλ +++−= avgavgjiij zzG xx   (3.27) 

 ( )jiavg zzz +=
2
1  (3.28) 

where zavg is the average altitude of the connecting nodes, αi is determined by the 

aircraft model, and λ is a constant used to map distance to fuel burn.  Dijkstra’s 

Algorithm was applied to the cost map to find the path of minimum fuel cost from each 

node to the goal [76].  The output is a vector, Ci, which gives the cost to go from each 

node i in the cost map to the goal.   

 The cost-to-go was completed by connecting the end of the detailed trajectory to a 

point in the cost map.  The position at the end of the detailed trajectory, x[Np], and the 

node in the cost map, xcp, are chosen by the optimization so that they are mutually 

visible and that the fuel cost required to travel between them is minimized.  Visibility is 

ensured by requiring a set of interpolation points between x[Np] and xcp to remain 

outside of the obstacle regions.  Equation 3.29 is used to select the visible point 
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where bvis,i is a binary variable for cost point i, and ncp is the number of nodes.  The cost 

associated with traveling this path is a function of the Euclidian distance and the altitude 

of the interpolation points.  The Euclidian distance, D, was approximated with Eq. 3.30 
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where mj is the set of integers between 1 and Mj, and ∆x, ∆y, and ∆z are the distances 

between x[Np] and xcp in the x, y, and z direction, respectively.  The altitude of the 

interpolation points was penalized using the same philosophy as in Eq. 3.27, which 

penalizes flight away from the optimal altitude.  The complete cost-to-go function is 

given in Eq. 3.31 

 ∑
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++⋅=
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i
ixvis

T DfbCJ
1

,   (3.31) 

where C is the cost vector, fx,i is the interpolation point altitude cost, nI is the number of 

interpolation points, and D is the cost of flight between x[k+Np] and xcp. 
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3.4 Linear vs. Quadratic Cost 

To contrast the differences in using a linear versus a quadratic cost, consider a single 

flight from O’Hare International Airport (ORD) to Los Angeles International Airport (LAX) 

using atmospheric data from November 17, 2001.  The objective of this example was to 

find a fuel optimal trajectory using both linear and quadratic cost functions for this route 

while flying clear of atmospheric areas containing RHi > 100%.  The fuel consumption 

and computational performance of the trajectories are compared to determine the 

tradeoff between accuracy and running time.  The fuel burn cost is derived from the 

model presented in Chapter 3.2, and the formulation of Chapter 3.3 describes the 

dynamical and aircraft performance constraints.  Table 3.3 lists the receding horizon 

parameters and the aircraft performance limitations used in this example.  The 

simulations were computed using CPLEX 10.2 [77] on a PC laptop with a 2.16GHz Intel 

Core2 Duo processor and 2GB of RAM. 

 Figures 3.11 and 3.12 show trajectories overlaid on two-dimensional contour plots of 

the RHi field at different altitudes.  The blue, magenta, and cyan trajectories correspond 

to the receding horizon mixed-integer linear programming (RH-MILP) formulations, each 

of which used a different number of piecewise linear segments in the cost function.  The 

black trajectory was optimized with a RH-MIQP formulation, and the red trajectory 

represents the non-receding horizon MILP limiting case formulation, where the goal is 

contained within the planning horizon.  The trajectories were initiated at approximately 

34,000 ft, and as seen in Fig. 3.11b, a region of RHi > 100% over southern Iowa and 

Missouri forced the trajectories to adjusts their routes.  The piecewise linear trajectories 

followed an almost identical horizontal flight path to avoid contrail formation.  The 
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quadratic trajectory deviated from the piecewise linear trajectories, which was caused 

by a difference in the sensitivity of altitude change to fuel burn in their respective cost 

functions.  The full horizon trajectory followed a much straighter flight path to LAX due to 

the fact that it was computed in one step and not in a receding horizon fashion. 

 Figures 3.13 and 3.14 show the aircraft and computational performance associated 

with the trajectories presented in Figs. 3.11 and 3.12.  Figure 3.13a shows the velocity 

profiles of the trajectories, and it is easy to see that the velocities corresponding to the 

receding horizon formulations are very similar.  The difference between the RH-MILPs 

and the MIQP can, at least in part, be explained by the fact that the MIQP is less 

sensitive to small velocity variations around the nominal velocity.  Figure 3.13b shows 

the altitude profiles of the trajectories, where it can be seen that an area of RHi > 100% 

was encountered approximately 0.4 hours into the flight.  The four and six piece RH-

MILP trajectories chose to climb over the area, while the two piece RH-MILP, the RH-

MIQP, and the full horizon trajectories chose to descend under the area.  The climb 

seen by all trajectories at 2 hours is due to the preprogrammed step-climb profile 

discussed earlier.  Figure 3.14b shows the computation expense of each method.  The 

two piece RH-MILP was the cheapest, followed by the four and six piece RH-MILPs, 

and the RH-MIQP was by far the most expensive from a computation standpoint.  

 Table 3.4 compares the performance of the four trajectories presented by this 

example.  The RH-MIQP showed the best performance in terms of total fuel burn, but 

was by far the most computationally expensive.  The four and six segment RH-MILPs 

displayed better fuel burn performance than the two segment RH-MILP, and were only 

slightly more computationally expensive.  The receding horizon trajectories burned 
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between 2.88 % and 2.23 % more fuel than the full horizon limiting case.  Overall, the 

full horizon trajectory burned 2.76% more fuel than a trajectory disregarding contrail 

avoidance.  The four-segment piecewise linear approximation showed the best 

combination of accuracy and computational performance, and is the type of 

approximation used in the remainder of this dissertation. 

 

3.5 Summary 

This chapter presented the three-dimensional path planning architecture used in this 

dissertation.  The aircraft performance and fuel burn models were discussed and the 

implementation of the models to the MIP was explained.  The avoidance constraints 

were given and discussed.  The cost function and cost-to-go were presented, and a 

trade study of cost function type was explored.  The results showed that the 4 segment 

piecewise linear cost function had the best combination of accuracy and efficiency for 

the scales of obstacles considered by this dissertation. 
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Table 3.1.  Engine Performance Software Input Parameters 
Mass Flow Rate  

(max throttle, sea level) 779 lbm/sec 

Bypass Ratio 5.1 
Compressor Pressure Ratio 32.8 

Fan Pressure Ratio 2.3 
 

Table 3.2.  Nominal Flight Conditions 
Weight (lb) Altitude (ft) Mach number True airspeed (knots) 

145,000 34,000 0.78 451 
135,000 36,000 0.78 447 
125,000 38,000 0.78 447 

 

Table 3.3.  Receding horizon parameters and aircraft performance limits 
Number of steps in planning horizon (Np) 8 

Number of steps in the execution horizon (Ne) 4  
Time step size (∆t) 3 min 

Maximum en-route velocity (Vmax) 470 knots 
Minimum en-route velocity (Vmin) 417 knots 

Maximum altitude (zmax) 42,000 ft 
Minimum altitude (zmin) 28,000 ft 

 

Table 3.4.  Comparison of  receding horizon trajectory performance 
 MILP Np = 8,   

Ne = 4 
2 Segment 

MILP Np = 8, 
Ne = 4 

4 Segment 

MILP Np = 8, 
Ne = 4 

6 Segment 

MIQP Np = 8, 
Ne = 4 

Max. Velocity 462.3 knots 462.1 knots 462.1 knots 457.3 knots 
Avg. Velocity 454.7 knots 454.6 knots 454.6 knots 451.8 knots 
Total Fuel Burn 20,824 lbs 20,731 lbs 20,734 lbs 20,695 lbs 
% Difference 
from Full 
Horizon 

2.88 % 2.42 % 2.43 % 2.23 % 

Flight Time 3.35 hrs 3.35 hrs 3.35 hrs 3.40 hrs 
Max CPU time 
/step 

3.23 sec 8.88 sec 7.27 sec 62.73 sec 

Avg CPU time 
/step 

1.94 sec 3.03 sec 2.69 sec 30.83 sec 
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Figure 3.1. Mid-sized jet transport drag polar data for a range of Mach 
numbers. 

 

 
Figure 3.2. Mid-sized jet transport thrust required for a range of Mach 
numbers. 
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Figure 3.3. The sensitivity of maximum rate of climb to altitude for a 
range of Mach numbers and weights for a mid-sized jet transport. 

 

 
Figure 3.4. Variation of TSFC with altitude for lines of different Mach 
number. 
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Figure 3.5. Altitude vs. Fuel Flow for W = 145,000 lb. 
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Figure 3.6. Velocity vs. Fuel Flow for W = 145,000 lb. 
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Figure 3.7. Sensitivity of fuel flow to altitude. 

 
 

Figure 3.8. Sensitivity of fuel flow to airspeed. 
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Figure 3.9. Simple example showing the relationship between the 
detailed trajectory (green), the line of sight (blue), and the cost-to-go 
(magenta). 

 

 

 
Figure 3.10. Piecewise linear approximation of the 2-norm of the 
velocity vector [34]. 

 



 52

60

70

80

90

100

110

120

-130 -120 -110 -100 -90 -80 -70

20

25

30

35

40

45

50

55

Degrees Longitude

D
eg

re
es

 L
at

itu
de

30122 ft

60

60

60

60

60

60
60

60

60
60

60

60
60

60
60

60

60

60

60

60
60

60

60

60

60

80

80
80

80

80

80

80

80

80

80

80

80

80

80 80

80

80

80

80
80

80

80

80

80

80
80 80

80

80

100

10
0

100

10
0

100

10
0

10
0

100

10
0

10
0

100

100

10
0

100

10
0

10
0

10
0

100

100

100

100

12
0

120

MILP - 2 piece
MILP - 4 piece
MILP - 6 piece
MIQP
Full Horizon

 
(a) 

60

70

80

90

100

110

120

-130 -120 -110 -100 -90 -80 -70

20

25

30

35

40

45

50

55

Degrees Longitude

D
eg

re
es

 L
at

itu
de

34056 ft

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

60

6060

60

60

6060

80

80

80

80

80

80

80 80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

80

100

100

100

100

100

10
0

10
0

10
0

100

100

100

100

10
0

10
0

100

100
100

100

10
0

10
0

10
0

100

100

12
0

12
0

120

120

120

120

120

120120

120

120

120

12
0120

120

12
0

120

120

120

MILP - 2 piece
MILP - 4 piece
MILP - 6 piece
MIQP
Full Horizon

 
(b) 

Figure 3.11.  Fuel optimal trajectories overlaid on contour plots of the RHi field at 
altitudes of (a) 30122 ft, (b) 34056 ft.  A map showing the boundaries of North America 
is in the background.   
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(b) 

Figure 3.12.  Fuel optimal trajectories overlaid on contour plots of the RHi field at 
altitudes of (a) 38737 ft, and (b) 44745 ft.  A map showing the boundaries of North 
America is in the background.   
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Figure 3.13.  Aircraft and computational performance: (a) velocity time history, (b) 
altitude time history. 
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Figure 3.14.  Aircraft and computational performance: (a) fuel burn time history, (b) 
receding horizon computation time. 
 



 56

Chapter 4 

Receding Horizon Mixed-Integer 
Programming with Soft Avoidance 
 
4.1 Introduction 

This chapter presents a new path planning algorithm that is based on the formulation of 

Chapter 3, but is modified to include soft obstacle avoidance.  The phrase “soft obstacle 

avoidance” means that instead of strictly forcing feasible trajectories outside of 

obstacles, feasible trajectories are allowed within obstacles, but with an accrued cost 

penalty.  This type of avoidance constraint is useful when obstacle penetration is not a 

safety of flight issue, such as the case with persistent contrail formation.  In the case of 

persistent contrail mitigation, soft avoidance constraints are attractive because strict 

avoidance is sometimes infeasible and cost prohibitive from an operational standpoint.  

For example, consider a large ice super saturated region over the middle of the United 

States.  Hard avoidance would force the flight path completely outside of the region, 

greatly increasing fuel cost and possibly delaying arrival time.  Soft avoidance allows 

the user to tradeoff fuel and arrival time costs with persistent contrail formation costs, 

which is much more appealing from an operational standpoint.  Consider another 

example where the airspace above an airport is dominated by an ice super saturated 

region.  Hard avoidance would prevent flights in and out of this airport, which is 

realistically operationally infeasible. 
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     The cost-to-go function described in Chapter 3, and in the literature [40, 41], forms a 

path of least cost through the vertices of the obstacles in the environment.  This 

approach is not optimal for a soft avoidance scenario because it forces the trajectory to 

the boundaries of the obstacle.  This chapter presents a novel cost-to-go approximation 

that allows the trajectory to pass through an obstacle without using the vertices of the 

obstacle as nodes in the cost grid.  Additionally, a new receding horizon algorithm which 

synthesizes the new cost-to-go and the detailed trajectory is explained and simulation 

results are presented.  The scalability of the new algorithm is simulated and the findings 

are discussed. 

     This chapter is organized as follows.  First, new avoidance constraints are presented 

which allow a trajectory to penetrate an obstacle, but with an assigned cost.  Next, a 

novel cost-to-go formulation and receding horizon control approach are explained, and 

simulation results of the new formulation are discussed.  Lastly, the results of the 

scalability analysis of the algorithm are investigated. 

 

4.2 Obstacle Avoidance and Penalty 

The obstacles of this chapter are formulated to be soft, meaning that they can be 

penetrated, but at a cost.  This section describes the formulation of the constraints for 

soft obstacle avoidance, and highlights the differences between this formulation and 

that of Chapter 3.  Additionally, this section discusses obstacle dynamics, and how the 

receding horizon controller accounts for the dynamics.  Lastly, it should be noted that 

the dynamical model and fuel cost used in the optimizations of this chapter are identical 

to the presentation in Chapter 3.   
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4.2.1   Soft Avoidance Constraints 

Persistent contrail mitigation is accomplished within the MILP framework by defining 

areas conducive to contrail formation as cuboids, and then penalizing flight through 

these regions, which is solvable by mixed-integer linear programming.  Equations 4.1 

and 4.2 show the constraints used to penalize persistent contrail formation. 
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The variable B defines the 6 planes that compose the cuboid, which represents an area 

of RHi > 100%.  The variable bo,i is a binary variable that is either 1 or 0 depending on 

whether constraint i is active, and g is a binary variable that takes the value 1 when all 6 

constraints are active.  This variable is weighted in the cost function and assigns a 

penalty to contrail formation.  The difference between these avoidance constraints and 

the constraints of Chapter 3.3.3.2 is the binary variable g[k] in Eq. 4.2.   
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4.2.2   Obstacle Dynamics 

Obstacle movement and evolution are predicted with a simple model based on the size 

of the obstacle and its observed movement in the past time step.  The general 

procedure can be described as finding the centroid of each avoidance area, and 

projecting the centroid of each area forward in time based on how the centroid moved in 

the last two time steps.  For the cuboid representation used in this dissertation, the 

centroid is found with Eq. 4.3 

 ( ) ⎟⎟
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where (xc, yc, zc) is the location of the centroid, and the high and low subscripts refer to 

the maximum and minimum values of the cuboid in the x, y, and z directions.  The 

velocity of the centroid was found with Eq. 4.4 
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where (vx,c, vy,c, vz,c) is the velocity of the centroid, and dt is the size of the time step.  

The future position of the thunderstorm is simply calculated with Eq. 4.5 

 ( ) ( )dtvizdtviydtvixzyx czccyccxcicicic ,0,,0,,0,,,, ,,,, ⋅+⋅+⋅+=  (4.5) 

where (xc,i, yc,i, zc,i) is the position of the centroid at time step i, and (xc,0, yc,0, zc,0) is the 

present position centroid.   

 

4.3 Cost-to-Go Formulation 

In previous studies involving receding horizon MILP, the cost-to-go was a function of the 

vertices of the obstacles in the environment [40-44].  This formulation works well when 
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the constraints of the optimization promote hard obstacle avoidance because the 

optimal trajectory tends to follow along the vertices of the obstacles.  However, in the 

case of soft obstacle avoidance, the optimal trajectory does not generally follow a path 

through the obstacles in the environment.  Therefore, a cost-to-go approximation 

capable of generating an optimal path through an obstacle was developed.  This section 

presents a novel receding horizon approach and cost-to-go capable of generating 

nearly optimal trajectories through obstacles with soft avoidance constraints. 

 

4.3.1   Algorithm Overview 

The development of this receding horizon control algorithm is based on lessons learned 

in previous work [25], and is intended to create nearly optimal paths though obstacles 

described by soft avoidance constraints.  The algorithm is formulated through six 

computational phases, enumerated below and explicitly defined in the following text.  

The steps to the algorithm are as follows: 

 

1. Find nominal trajectory disregarding persistent contrail formation 

2. Create cost grid relative to the aircraft initial position 

3. Populate cost grid and create visibility graph 

4. Find path of least cost using a modified Dijkstra’s algorithm 

5. Find optimal trajectory mitigating persistent contrail formation 

6. Update initial position and repeat until the destination is reached 

 

The receding horizon algorithm and the cost-to-go associated with the persistent 

contrail mitigation formulation are described in the following steps: 
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1.   Find nominal trajectory disregarding persistent contrail formation 

 Existing work has found that trajectories generated with the framework of Chapter 3 

tend to be overly conservative when the trajectory is generated in an environment with a 

limited number of obstacles [25].  The receding horizon algorithm developed in this 

chapter is intended to improve the optimality by penalizing flight away from a nominal 

obstacle-free optimal trajectory.  The obstacle-free optimal trajectory is solved using 

identical dynamical constraints, aircraft performance limitations, and fuel burn cost as 

the formulation of Chapter 3.  However, unlike the formulation of Chapter 3, this 

trajectory is generated with a planning horizon that stretches until the destination, 

negating the need for a cost-to-go.  Normally, a planning horizon of this length would be 

too much of a computational burden; however, the computation time for this trajectory is 

significantly reduced due to the lack of obstacles, and corresponding binary variables in 

the optimization.   

 

2.   Create cost grid relative to the aircraft initial position 

 In order to allow flight through an obstacle, the cost-to-go must include nodes that lie 

within the obstacles, which is not possible using the framework of Chapter 3.  Therefore, 

a cost grid was created to represent the far-field of the receding horizon controller.  The 

grid consists of sets of nodes that extend radially out from the aircraft, and are stacked 

vertically to assemble a three-dimensional grid.  Figure 4.1 shows a top-down view of 

the cost grid.  It is important to keep in mind that the cost grid is 3-dimensional, and that 

Fig. 4.1 only represents one layer of the grid.  The nodes (black dots in Fig. 4.1) lie 
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outside of the space reachable by the aircraft in the planning horizon and were defined 

by the following equations: 

 tNVr p ∆⋅⋅= max0  (4.6) 

 ( ) jikji rx θδ sin0,, +=  (4.7) 

 ( ) jikji ry θδ cos0,, +=  (4.8) 

 ξ⋅+= kzz kji 0,,  (4.9) 

 εδδ ⋅+=+ iii 1  (4.10) 

 { }nj θθθ , ... ,1=  for nj  ... 1=  (4.11) 

where r0 is the reachable distance in the planning horizon, Vmax is maximum velocity, Np 

is the number of steps in the planning horizon, and ∆t is the size of the time step.  In 

Eqs. 4.7-4.9, xi,j,k, yi,j,k, and zi,j,k are the position coordinates for the nodes,  where δi is 

the radial increment of the node away from the airplane, θj is the angular increment of 

the node, z0 is the altitude of the bottom layer in the grid, and ξ is a user determined 

constant that spaces the vertical layers of the grid.  In Equation 4.10, ε is a user 

determined constant that spaces the radial increments of the grid.  The size of the grid 

is set by the user prior to the execution of the algorithm.   

 

3.   Populate cost grid and create visibility graph 

 The cost-to-go is determined by finding a path of least cost through the cost grid 

created in step 2.  Each node in the cost grid is assigned a value based on the distance 

from the nominal trajectory and whether or not the node lies in an area of ice 
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supersaturation.  The distance from the nominal trajectory is calculated with a linear 

program, which is given as Eq. 4.12.   
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where Di,j,k,l is a vector of the distances from each node in the cost grid to the nominal 

trajectory,  c is a n x 1 vector of 1’s, where n is the number of nodes in the grid, (xi,j,k, 

yi,j,k, zi,j,k) are the position coordinates for the nodes, and  (xnom,l, ynom,l, znom,l) are the 

position coordinates of the lth waypoint in the nominal trajectory.  The total cost of each 

node is defined by Eq. 4.13 

 kjikjikji PD ,,,,,, ⋅+⋅=Φ υγ  (4.13) 

where γ is a user defined weighting on the distance from the nominal trajectory, υ is a 

user defined weighting on persistent contrail formation, and Pi,j,k is a vector of 1’s and 

0’s where a 1 indicates that the node lies within an area of ice supersaturation.   

 

4.   Find path of least cost using a modified Dijkstra’s algorithm 

  As mentioned previously, the cost-to-go is the path of least cost through the cost grid.  

The path of least cost is found using a modified version of Dijkstra’s algorithm, where 

Dijkstra’s algorithm is a method used to find the shortest path through a graph of nodes 

[76].  This step modifies Dijkstra’s algorithm to account for the cost of each node found 

in step 3 in addition to the distance between the nodes, which means that the algorithm 

is finding the path of least cost, not the path of least distance.  For example, the cost to 

travel between nodes (1,1,1) and (2,2,2) is given by Eq. 4.14 
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where ρ is a user defined weighting on the distance between nodes.  The path of least 

cost is shown in Fig. 4.2 as the magenta line passing through the cost grid.  The aircraft 

in Fig. 4.2 is traveling from right to left, where the black crosses show the executed 

trajectory, the green crosses show the planning horizon, the blue line connects the 

planning horizon to the cost grid, and the area of ice supersaturation is depicted by the 

gray box.  Note that this figure is shown in two dimensions for ease of understanding, 

and that the simulation is actually in three dimensions. 

 

5.   Find optimal trajectory mitigating persistent contrail formation  

 The trajectory is optimized in a receding horizon fashion where the total cost of the 

trajectory is the sum of the cost in the planning horizon, the cost-to-go, and the line of 

sight, which connects the end of the planning horizon to the cost grid.  The total cost of 

the trajectory is shown in Eq. 4.15 

 ( ) LOSgotot

N

i
descendidescenddescendibcitermifiiviatotal DfbfbfbAffJ
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⋅+Ψ++++++= −−
=
∑ ηcos

1
,,lim,,,,  (4.15) 

where Ψcost-to-go is the cost-to-go, DLOS is the distance between the end of the planning 

horizon and the start of the cost-to-go, η is a weighting on the line of sight, and the rest 

of the equation is the cost in the planning horizon.  It should be reminded that the 

following weightings have an effect on the behavior of the trajectory: the nominal 

trajectory and persistent contrail weighting (Eq. 4.13), the node distance weighting (Eq. 

4.14), and the line of sight weighting (Eq. 4.15).  In the cases of the node distance and 

line of sight weightings, the weighting factors were scaled to approximate an average 
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fuel burn over the given distance based on nominal aircraft performance parameters.  

For example, the line of sight weighting was approximated with Eq. 4.16 

 
cruise

cruisef

V
W ,≈ρ  (4.16) 

where Wf,cruise is the nominal fuel burn and Vcruise is the nominal cruise airspeed.  The 

persistent contrail weighting is treated as a user defined value which determines the 

likelihood of persistent contrail formation.   

 

6.   Update initial position and repeat until the destination is reached 

 The receding horizon controller executes steps 1-5 of this algorithm, updates the 

initial position, and then repeats steps 1-5 until the destination is reached.  In addition to 

updating the initial position, the environment is updated to account for any change in the 

areas of ice supersaturation and to adjust the nominal flight condition of the aircraft, 

which depends on the aircraft weight at that iteration.   

 

4.3.2   Simulation Results 

The algorithm was tested through simulation to assess its viability and to compare its 

performance to a non-receding horizon MILP trajectory, which is the most optimal 

solution the method can provide.  Figure 4.3 shows the results for an environment 

containing one large static obstacle.  The trajectory was generated with a planning 

horizon of 16, an execution horizon of 8, and a time step of 2.4 minutes.  The penalty for 

obstacle penetration is large to help illustrate the operation of the algorithm. The 

obstacle shaded in yellow, the trajectory originates on the right side of the figure, and 
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the goal is located in the bottom left corner.  The executed waypoints in the trajectory 

are identified by black crosses, the planning horizon by green crosses, the line of sight 

by a blue line, and the cost grid by red circles.  The circles in the cost grid are blue 

when they are located within the boundaries of an obstacle.  The receding horizon 

controller initially recognizes the obstacle in the cost grid, as is observed by the blue 

circles within the obstacle in Fig. 4.3(a).  The cost-to-go finds a path of least cost 

through the cost grid and around the obstacle, and the receding horizon controller 

iterates until the goal is reached.  In Fig. 4.3(f), the overall shape of the receding horizon 

trajectory is similar to the non-receding horizon trajectory.  Additionally, the receding 

horizon trajectory performs well compared to the non-receding horizon controller, 

burning only 0.9% more fuel and arriving 2 minutes later. 

     Figure 4.4 presents an example with an environment containing three dynamic 

obstacles.  The trajectory was generated with a planning horizon of 16, an execution 

horizon of 8, and a time step of 2.4 minutes.  The penalty for obstacle penetration is 

large to help illustrate the operation of the algorithm. The obstacles are shaded in red, 

and the trajectory originates on the right side of the figure and the goal is located in the 

bottom left corner.  The executed waypoints in the trajectory are identified by black 

crosses, the planning horizon by green crosses, the line of sight by a blue line, and the 

cost grid by red circles.  Compared to the first example, the obstacles in this example 

are small and do not have the same effect on the cost-to-go.  The cost-to-go avoids the 

obstacles, but it does so without significantly changing the trajectory.  As the trajectory 

progresses, the obstacles become within reach of the planning horizon, and the 

trajectory begins to change direction, as is seen in Fig. 4.4(c).  In Fig. 4.4(d), it is 
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apparent the receding horizon controller predicts the dynamics of the obstacle, allowing 

the planning horizon to find a feasible solution behind the first obstacle.  The receding 

horizon trajectory continues until the aircraft reaches the destination.  Similarly to the 

previous example, this receding horizon trajectory closely matches the non-receding 

horizon trajectory, as is seen in Fig. 4.4(f).  The receding horizon trajectory burned 0.6% 

more fuel and arrived 4 minutes later than the non-receding horizon trajectory. 

 

4.4 Scalability of Algorithm 

It is important to investigate how the running time of an algorithm scales with the size of 

the problem.  Typically, this analysis is conducted by summing of the running times of 

each statement executed in the algorithm.  Sometimes, an algorithm can be too 

complex for a simple counting type analysis.  In this case, the running time is evaluated 

through stochastic simulation, where the algorithm is executed with different input sizes 

and the results are graphed.  A scalability analysis of the algorithm developed in this 

chapter is performed for each step in the algorithm, and then the algorithm is evaluated 

as a whole.   

     The effect of nominal trajectory size, cost grid size, and planning horizon size are 

analyzed for each step.  The nominal trajectory size is equal to the number of waypoints 

in the nominal trajectory.  The number of binary variables in the problem depends on 

the number of waypoints in the nominal trajectory due to the quadratic approximation for 

velocity, as given in Eqs. 3.11 and 3.12.  The cost grid size is the number of nodes in 

the cost grid.  The planning horizon size is equal to the number of waypoints in the 

planning horizon.  The number of binary variables in the problem increases with the 
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planning horizon size because of the quadratic approximation for velocity and the 

obstacle constraints.   

     Step 1 of the algorithm is to find a nominal trajectory in absence of obstacles using 

MILP.  It is an analytically ambiguous relation between the operational executions 

involved in Step 1 and the overall computational time achieved, therefore an 

experimental analysis is performed.  Figure 4.5 shows the sensitivity of Step 1 running 

time to changes in planning horizon size, nominal trajectory size, and cost grid size.  

The data points in Fig. 4.5 are averages of approximately 20 trials of the algorithm.  It is 

apparent from looking at Fig. 4.5 that the size of the nominal trajectory has a dominant 

effect on the running time of Step 1.  The effect of doubling the number of waypoints in 

the nominal trajectory roughly doubles the running time of Step 1.  However, it should 

be noted that this trend should not be expected for a large number of waypoints due to 

the fact that MILP path planning problems have been found to be NP-Hard.  

     Step 2 is the creation of the cost grid for the cost-to-go.  The construction of the cost 

grid is relatively straight forward, where the number of statements is equal to the size of 

the grid.  Therefore, we say that Step 2 running time is O(Cij), where Cij is the number of 

nodes in the cost grid and O is the standard “big-O” notation.  In mathematics, “big-O” 

notation describes the limiting behavior of a function when the argument tends towards 

a particular value or infinity. 

     Step 3 of the algorithm populates the cost grid and creates a visibility graph for the 

nodes in the grid.  Like Step 1, this step in the algorithm was evaluated via experiment.  

Figure 4.6 presents the sensitivity of Step 3 running time to changes in planning horizon 

size, nominal trajectory size, and cost grid size.  The data points in Fig. 4.6 are 



 69

averages of approximately 20 trials of the algorithm.  The dominant input on the running 

time of Step 3 is the size of the cost grid, with the size of the nominal trajectory having a 

secondary effect.  Doubling the size of the cost grid roughly doubles the running time of 

Step 3.  The nominal trajectory size has a small effect on the running time because the 

distance from each node in the cost grid to the nominal trajectory is computed with a 

linear program, of which the nominal trajectory size is an input.  Linear programming 

problems have been shown to be solvable in polynomial time. 

     Step 4 of the algorithm uses a modified version of Dijkstra’s algorithm to find the path 

of least cost through the cost grid.  It has been shown that the running time for Dijkstra’s 

algorithm is O(E2), where E is a list of the vertices in the graph [76].  In the case of Step 

4, the running time is therefore O(Cij
2), where Cij is the number of nodes in the cost grid. 

     Step 5 is the optimization of the detailed trajectory.  The running time of this step is 

evaluated experimentally.  Figure 4.7 gives the sensitivity of Step 5 running time to 

changes in planning horizon size, nominal trajectory size, and cost grid size.  The data 

points in Fig. 4.7 are averages of approximately 20 trials of the algorithm.  The dominant 

effect on the running time is the size of the planning horizon.  Doubling the planning 

horizon roughly doubles the running time as long as the planning horizon is small.  For 

larger planning horizons, doubling the planning horizon size has a much more 

significant effect of the running time. 

     An analysis of the complete algorithm is important to show that the optimization can 

remain tractable with increasing problem size.  Mixed-integer linear programming 

problems have been proven to be NP-Hard in the number of binary variables [46, 47].  

The number of binary variables depends primarily on the number of waypoints in the 
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planning horizon and the number of obstacles in the environment.  As the number of 

binary variables in the problem increases, the computation time of the increases 

exponentially.  Figure 4.8 shows the average computation time of the algorithm as the 

number of binary variables increases.  The computation time shows a gradual and 

consistent increase until approximately 2300 binary variables, at which point the 

average computation time increases dramatically and becomes unpredictable. 

     Figure 4.9 shows how the maximum computation time of the algorithm depends on 

the number of binary variables in the problem.  As expected, the maximum computation 

time increases considerably at approximately 2300 binary variables.  Additionally, it is of 

note that the maximum computation time at approximately 2400 binary variables is 250 

seconds, which is large enough to make the path planner intractable for any real time 

embedded aviation applications.  Figure 4.10 presents the dependence of the standard 

deviation of the computation time to the number of binary variables in the problem.  The 

maximum of the standard deviation occurs at approximately 2500 binary variables and 

takes a value of 120 seconds. 

     The algorithm does not have predictable scaling behavior above a certain number of 

binary variables, which is observed to be approximately 2400.  When the problem size 

reaches this point, the tractability of the algorithm in a real time setting comes into 

question, due to the significantly increasing average computation time and more 

importantly, the standard deviation of the computation time.  Therefore, the algorithm 

analysis establishes a bound of 2400 binary variables to help the algorithm maintain 

tractability for real time applications.  This number of binary variables corresponds to 

approximately 20 obstacles in the environment with a planning horizon of 16 waypoints. 
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4.5 Summary 

This chapter presented a novel receding horizon algorithm and cost-to-go formulation to 

generate trajectories that obey soft obstacle avoidance.  The significance of soft 

avoidance is that strict avoidance is sometimes infeasible and cost prohibitive from an 

operational standpoint.  This is the case in persistent contrail mitigation, where areas of 

ice supersaturation can be extremely large and possibly cover the origin and destination 

of a flight.  The steps of the algorithm were discussed and simulations of the algorithm 

were conducted to investigate its performance, and the receding horizon algorithm 

performed very well compared to the non-receding horizon formulation.  Lastly, the 

scalability of the algorithm was explored through an empirical investigation. 
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Figure 4.1. Top-down View of Cost Grid.  This figure shows one layer of the cost grid. 
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Figure 4.2. Top-down view of trajectory showing the planning horizon (green), line of 
sight (blue), and the cost-to-go (magenta).  The open circles are nodes in the cost grid, 
and blue circles indicate the node is in an area of ice super saturation (gray box).  The 
black crosses show executed waypoints. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 4.3. Example of receding horizon trajectory around a large sized obstacle.  The 
executed portion of the receding horizon trajectory is shown in black, the planning 
horizon is in green, and the cost-to-go is magenta.  The non-receding horizon trajectory 
is depicted as a blue dashed line.  
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 4.4. Example of a receding horizon trajectory around three dynamic obstacles.  
The executed portion of the receding horizon trajectory is shown in black, the planning 
horizon is in green, and the cost-to-go is magenta.  The non-receding horizon trajectory 
is depicted as a blue dashed line. 
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Figure 4.5. Sensitivity of Step 1 running time to (a) planning 
horizon size, (b) nominal trajectory size, and (c) cost grid size. 
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Figure 4.6. Sensitivity of Step 3 running time to (a) planning 
horizon size, (b) nominal trajectory size, and (c) cost grid size. 
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Figure 4.7. Sensitivity of Step 5 running time to (a) planning 
horizon size, (b) nominal trajectory size, and (c) cost grid size. 
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Figure 4.8. Average computation time of algorithm for various problem sizes.  
The solid black line is an exponential trend line. 
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Figure 4.9. Maximum computation time of algorithm for various problem sizes.  
The solid black line is an exponential trend line. 
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Figure 4.10. Standard deviation of computation time of algorithm for various 
problem sizes.  The solid black line is an exponential trend line. 
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Chapter 5 

Receding Horizon Control in the 
Presence of Multi-Scale Disturbances 
 
5.1 Introduction 

Receding horizon control, otherwise known as Model Predictive Control (MPC), has 

recently been studied as a controls technique for aerospace applications due to its 

ability to systematically handle vehicle dynamics constraints, performance limitations, 

and no-fly areas.  Traditionally, MPC has been used in process control, where the 

problems are large and the time scales are typically on the order of minutes and hours 

[78].  Improvements in computer technology have enabled the use of receding horizon 

control in problems with much faster dynamics such as aircraft and spacecraft trajectory 

optimization [33]. 

     As previously mentioned, the receding horizon controller divides the trajectory into 

three segments of varying fidelity to ensure the path planning problem studied by this 

research is tractable in real-time.  The detailed trajectory is the segment extending from 

the initial position of the aircraft, and is computed subject to a vehicle dynamics and 

performance model.  The number of waypoints in the detailed trajectory is called the 

planning horizon, and the waypoints are separated by a specified time step.  The rest of 

the trajectory is represented by the cost-to-go, where the cost-to-go is a coarse 

approximation of the trajectory through a set of grid points extending away from the 
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planning horizon.  As described in Chapter 4, the cost-to-go represents the path of least 

cost from the end of the planning horizon to the destination.  Figure 5.1 depicts the 

three segments of the trajectory, where the detailed trajectory is shown in green, the 

line-of-sight is in blue, and the cost-to-go is magenta.  The trajectory is executed for a 

specified number of waypoints in the planning horizon, called the execution horizon, 

then the aircraft states and environment are updated, and the process is repeated until 

the destination is reached.  

     This chapter examines the effect of multi-scale disturbances in the environment on 

the performance of the receding horizon controller.  The problem of multiple scales has 

been addressed in the process control industry as a function of time scale [79], but it 

has not been addressed in the context of a trajectory planning problem, which operates 

in a far more reactive fashion than was addressed previously.  This research 

investigates the effect of multiple scales, specifically the effect of disturbance size and 

motion in a system with much faster dynamics than previously studied.   

     The scenarios of this chapter involve a single flight from Chicago to Los Angeles in 

the presence of obstacles that exploit the sensitivities of receding horizon trajectory 

planning.  The disturbances studied in this chapter include hard and soft no-fly zone 

constraints which occur with varied areas and dynamics.  The effect of disturbance size 

and speed on the trajectories will be initially analyzed independently, and then in a 

combined fashion.  Lastly, a “best” receding horizon strategy is presented which 

provides a novel way to approach a multi-scale trajectory planning problem.   
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5.2 Sensitivity of Trajectory to Disturbance Size 

Aircraft path planning problems can be subject to many different types of disturbances 

that are of diverse sizes.  The path planning problem studied by this research 

specifically considers the disturbances of persistent contrail formation, thunderstorm 

avoidance, and collision avoidance.  As mentioned in Chapter 2, persistent contrails 

form when an aircraft flies through an area in the atmosphere where the relative 

humidity with respect to ice is greater then 100%.  These areas are extremely large in 

size, sometimes covering multiple states.  Thunderstorms are much smaller, often with 

areas on the order of tens of square miles.  Collision avoidance accounts for the 

smallest area, with avoidance regions of only a few square miles.   

     The pathological disturbances of this section are designed to emulate the 

characteristics of the events described above, and are generically classified as large, 

medium, small, and tiny.  Table 5.1 shows the sizes of the obstacles used in this 

analysis, where the characteristic length is determined by the length of the widest 

section of the obstacle.  Figure 5.2 depicts the definition of characteristic length for a 

typical obstacle, as is used in this chapter.  This section will show how trajectories 

generated with receding horizon control are affected by obstacle size through varying 

parameters in the receding horizon controller and observing the results. 

 

5.2.1   Effect of Planning Horizon Length 

The planning horizon (Np) is composed of the waypoints in the detailed trajectory 

section of the complete trajectory.  The locations of the waypoints in the planning 
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horizon are calculated subject to realistic vehicle dynamics and performance limitations.  

The length of the planning horizon is calculated by the following equation 

 dtvl
pN

i
ip ⋅= ∑

=1

v  (5.1) 

where lp is the planning horizon length, Np is the number of waypoints in the planning 

horizon, v is the aircraft velocity, and dt is the time step.  The independent variables in 

Eq. 5.1 are the number of waypoints in the planning horizon and the size of the time 

step.  The sensitivity of these variables to the shape and fuel consumption of the 

trajectory will be analyzed. 

 

5.2.1.1  Hard Avoidance Constraints 

The first set of disturbances in the analysis includes obstacles with hard avoidance 

constraints, which enforce that no feasible trajectory can include a waypoint within the 

boundaries of the obstacle.  Figure 5.3 shows the behavior of receding horizon 

trajectories with different planning horizons around a large static obstacle.  The 

trajectories should be compared to the most optimal solution, which was generated as a 

non-receding horizon MILP and is depicted in blue.  Additionally, it should be noted that 

the receding horizon trajectories were generated with an execution horizon of two 

waypoints and a time step of 2.4 minutes.  The set of four trajectories in Fig. 5.3 take 

two distinct paths around the obstacle; the optimal and 24 waypoint planning horizon 

trajectories follow similar paths north of the obstacle, while the 12 and 6 waypoint 

planning horizon trajectories follow paths south of the obstacle.  This is significant in 

that the 12 and 6 waypoint trajectories burn on average 3.0% more fuel than the optimal 
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trajectory, compared to the 24 waypoint trajectory which burns 1.4% more fuel than the 

optimal trajectory.  Note that the length of the 24 waypoint planning horizon is longer 

than the characteristic length of the obstacle. 

     Figure 5.4 shows the sensitivity of different planning horizons to a disturbance that is 

a medium sized obstacle with hard avoidance constraints.  Similarly to Fig. 5.3, the 

trajectories in this set follow two distinct paths, where the trajectory with the highest 

amount of waypoints in the planning horizon more closely matches the optimal 

trajectory.  The trajectory with 16 waypoints in the planning horizon only burned 0.8% 

more fuel than the optimal trajectory, while the trajectories with 8 and 12 waypoints in 

the planning horizon burned on average 2.6% more fuel than the optimal trajectory.   

     Figure 5.5 shows the paths of receding horizon trajectories with varied planning 

horizons around a small obstacle.  In this example, all of the trajectories follow a similar 

path from the origin to the destination.  There are occasional differences between the 

receding horizon trajectories and the optimal trajectory, but the differences are 

significantly less than in Figs. 5.3 and 5.4.  This is most likely due to the fact that the 

characteristic length of the obstacle is much smaller than the lengths of the planning 

horizons. 

     The tiny class of obstacle presents an anomalous case that is designed to emulate 

collision avoidance in a multi-aircraft scenario.  The characteristic length for the tiny 

obstacle is only 10 nautical miles, which corresponds to a “safety zone” of 5 nm radius 

around the aircraft.  What makes this scenario unique is that if the time step is too large, 

the path planning algorithm can find a feasible trajectory through the safety zone by 
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placing its waypoints on either side of the safety zone.  To prevent this, the following 

relationship must be true: 

 dtVmax>λ  (5.2) 

where λ is the characteristic length, Vmax is the maximum velocity, and dt is the size of 

the time step.  If Eq. 5.2 is false, then the planning horizon can straddle the obstacle, as 

seen in Fig. 5.6 where the planning horizon waypoints are shown as orange stars.   

 

5.2.1.2  Soft Avoidance Constraints  

Some situations do not require the strict avoidance that hard constraints provide.  In 

these cases, soft avoidance constraints are used that penalize obstacle penetration 

instead of precluding it.  Figure 5.7 shows the behavior of receding horizon trajectories 

of different planning horizon length around a large obstacle with soft avoidance 

constraints.  The receding horizon trajectories are compared to a non-receding horizon 

MILP trajectory, which is shown in blue.  The trajectory with 8 waypoints in the planning 

horizon does not change course and passes through the obstacle, leaving 417 nm of 

path length within the boundaries of the obstacle.  Because this trajectory does not alter 

its course around the obstacle, it burns 0.4% fuel less than the non-receding horizon 

trajectory.  The 12 and 16 waypoint planning horizon trajectories climb above the 

obstacle, leaving only 74 and 63 nm of path length within the obstacle, respectively.  

However, these trajectories burn more fuel than the 8 waypoint trajectory; specifically 

0.1% and 0.09% less fuel than the non-receding horizon trajectory, respectively. 

     Figure 5.8 shows the sensitivity of different planning horizons to a disturbance that is 

a medium sized obstacle with soft avoidance constraints.  Similar to the large obstacle 
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case, the trajectory with 8 waypoints in the planning horizon does not alter its course in 

response to the obstacle.  This trajectory is responsible for 202 nm of path length within 

the obstacle and it burns 0.3% fuel less than the non-receding horizon trajectory.  The 

trajectories with 12 and 16 waypoints in the planning horizon enter a slow climb to 

ascend about the obstacle but still create 115 and 111 nm of path length within the 

obstacle boundaries, respectively.  These trajectories burn 0.04% and 0.03% less fuel 

than the non-receding horizon trajectory, respectively. 

     Figure 5.9 presents the effect of different planning horizons on the trajectory in the 

presence of a small sized obstacle with soft avoidance constraints.  In this example 

none of the trajectories are affected by the presence of the obstacle.  Planning horizon 

length has no appreciable effect on the overall shape and performance of the 

trajectories, as they all are responsible for approximately 65 nm of path length within the 

obstacle and fuel burn differences are negligible. 

 

5.2.1.3 Summary of the Effect of Planning Horizon Length 

The effect of planning horizon length is clearly evident in the examples presented in the 

prior subsection.  Generally speaking, the longer the planning horizon, the better the 

receding horizon trajectory matches the optimal trajectory.  Table 5.2 gives the 

maximum planning horizon length for planning horizons with different numbers of 

waypoints.  The maximum planning horizon length was calculated with Eq. 5.1 with a 

maximum velocity of 470 knots and a time step of 2.4 minutes.   

     In the case of hard obstacle avoidance, it is interesting to note that as long as the 

maximum planning horizon length given in Table 5.2 is longer than the characteristic 
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length of the obstacle given in Table 5.1, the receding horizon trajectory tracks the 

optimal trajectory relatively well.  If the maximum length of the planning horizon is less 

than the characteristic length, then the receding horizon controller typically picks an 

inefficient path around the obstacle.   

     For the tiny obstacle case, in order for the inequality of Eq. 5.2 to be true, the time 

step cannot be greater than 1.28 minutes with a maximum velocity of 470 knots for the 

given aircraft models.  Most of the analysis of this section was computed with a time 

step of 2.4 minutes, which is obviously too large to handle a tiny obstacle.  If the time 

step of the earlier analysis were to change to 1.2 minutes, twice the number of 

waypoints would be required in the planning horizon to have the same maximum 

planning horizon length.  For example, a trajectory with 16 waypoints in the planning 

horizon and a time step of 2.4 minutes was found to track the non-receding horizon 

trajectory well for medium sized and smaller obstacles.  To get this same behavior with 

a time step of 1.2 minutes, the number of waypoints in the planning horizon would need 

to increase to 32.  As mentioned in Chapter 4.4, the MILP method does not scale well 

with the number of binary variables, and increasing the number of waypoints introduces 

more binary variables to the optimization which could drive the algorithm to become 

intractable.  

     In the case of soft obstacle avoidance, there is a less obvious correlation between 

maximum planning horizon length and trajectory optimality.  It is still generally true that 

the receding horizon trajectories with longer planning horizon lengths better tracked the 

non-receding horizon trajectory, but there is not an observable correlation between 
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maximum planning horizon length, obstacle characteristic length, and overall trajectory 

shape.   

 

5.2.2   Effect of Execution Horizon Length 

The execution horizon (Ne) is composed of waypoints in the detailed trajectory that are 

visited before the receding horizon controller updates the environment.  For example, if 

the execution horizon is two, the first two waypoints in the planning horizon are visited 

and then the trajectory is recalculated.  The length of the execution horizon is a function 

of the following equation 

 dtvl
eN

i
ie ⋅= ∑

=1

v  (5.3) 

where le is the execution horizon length, Ne is the number of waypoints in the execution 

horizon, v is the aircraft velocity, and dt is the time step.  The independent variables in 

Eq. 5.3 are the number of waypoints in the execution horizon and the size of the time 

step.  The sensitivity of these variables to the overall performance of the trajectory will 

be analyzed. 

 

5.2.2.1  Hard Avoidance Constraints 

The first set of disturbances in the analysis includes obstacles with hard avoidance 

constraints.  Figure 5.10 shows the behavior of receding horizon trajectories with 

different numbers of waypoints in the execution horizon around a large obstacle with 

hard constraints.  The planning horizon for this example consists of 12 waypoints and 

the time step is 2.4 minutes.  The most obvious observation of this figure is that none of 
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the receding horizon trajectories follow the path of the non-receding horizon trajectory, 

which is shown in blue.  A closer look at the trajectories shows that the trajectories with 

the smaller execution horizons make an earlier decision to change course around the 

obstacle.  In this case, the earlier decision corresponds to better performance.  The 

trajectory with 2 waypoints in the execution horizon burned 2.8% more fuel than the 

non-receding horizon trajectory, compared to 3.0% and 3.1% for the 6 and 8 execution 

horizon trajectories, respectively. 

     Figure 5.11 presents the sensitivity to execution horizon for receding horizon 

trajectories around a medium sized obstacle with hard avoidance constraints.  The 

planning horizon for this example consists of 16 waypoints and the time step is 2.4 

minutes.  All of the trajectories generally follow the same path, however there are small 

differences between the receding horizon trajectories and the non-receding horizon 

trajectory.  The trajectory with 8 waypoints in the execution horizon follows a much more 

conservative path around the obstacle compared to the trajectories with 2 and 12 

waypoints in the execution horizon.  The trajectory with 2 waypoints in the execution 

horizon burned 0.8% more fuel than the non-receding horizon trajectory, while the 

trajectories with 8 and 12 waypoints in the execution horizon burned 1.3% and 0.7% 

more fuel than the non-receding horizon trajectory. 

     Figure 5.12 gives the sensitivity of the receding horizon trajectories to execution 

horizon in the presence of a small sized obstacle with hard avoidance constraints.  The 

planning horizon for this example consists of 12 waypoints and the time step is 2.4 

minutes.  The trajectories in this figure are generally well behaved with the exception of 

the trajectory with 6 waypoints in the execution horizon, which alters its path to pass 
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below the obstacle instead of above it.  The trajectory with 8 waypoints in the execution 

horizon initially follows the 6 waypoint trajectory, but switches its course over north 

western Missouri to track closer to the non-receding horizon trajectory.  The trajectory 

with 2 waypoints in the execution horizon is the closest to the non-receding horizon 

trajectory, and burns only 0.06% more fuel.  The 6 waypoint trajectory was the most 

inaccurate, with a fuel burn of 1.6% more than the non-receding horizon trajectory.  The 

8 waypoint trajectory burned 0.07% more fuel than the non-receding horizon trajectory. 

 

5.2.2.2 Soft Avoidance Constraints 

The effect of varying execution horizon in the presence of soft avoidance constraints is 

discussed in this section.  Figure 5.13 shows the sensitivity of receding horizon 

trajectories to execution horizon length in the presence of a large obstacle with soft 

avoidance constraints.  In this example there are 16 waypoints in the planning horizon 

and the time step is 2.4 minutes.  Generally speaking, the longer execution horizons 

correspond to trajectories closer to the non-receding horizon trajectory.  The trajectory 

with 2 waypoints in the execution horizon consists of 63 nm of path length within the 

boundaries of the obstacle, whereas the trajectories with 8 and 12 waypoints in the 

execution horizon correspond to approximately 8 and 6 miles of path length in the 

obstacle, respectively.  The 2 waypoint trajectory burned 0.06% less fuel than the non-

receding horizon trajectory, the difference in fuel burn between the 8 waypoint trajectory 

and the non-receding horizon trajectory is negligible, and the 12 waypoint trajectory 

burned 0.05% less fuel than the non-receding horizon trajectory. 
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     Figure 5.14 shows the sensitivity of receding horizon trajectories to execution 

horizon length in the presence of a medium obstacle with soft avoidance constraints.  In 

this example there are 16 waypoints in the planning horizon and the time step is 2.4 

minutes.  The trajectory with 2 waypoints in the execution horizon created a path length 

of 115 nm and burned 0.3% less fuel than the non-receding horizon trajectory.  The 

trajectories with 6 and 8 waypoints in the execution horizon created path lengths of 8 

nm and 43 nm, respectively.  The 6 waypoint trajectory burned 0.02% more fuel than 

the non-receding horizon trajectory, and the 8 waypoint trajectory burned 0.06% less 

fuel than the non-receding horizon trajectory. 

     Figure 5.15 presents the behavior of receding horizon trajectories of different 

execution horizon lengths around a small sized obstacle with soft avoidance constraints.  

The receding horizon trajectories in this figure have 12 waypoints in the planning 

horizon and use a time step of 2.4 minutes.  All of the trajectories penetrate the obstacle 

without altering their course and create 65 nm of path length within the boundaries of 

the obstacle.  The fuel burn of all of the trajectories exhibit negligible differences. 

 

5.2.2.3  Summary of the Effect of Execution Horizon Length   

Simulations were conducted to analyze the sensitivity of receding horizon trajectories to 

the length of the execution horizon (Eq. 5.3).  The effect of execution horizon length on 

the receding horizon trajectories is more subtle than the effect of planning horizon 

length; however, a definite trend exists.  In general, the trajectories with smaller 

execution horizons performed more efficiently than those with longer execution horizons 

when in the presence of hard avoidance constraints.  When navigating through areas 
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with soft avoidance constraints, the opposite is true; the trajectories with longer 

execution horizons more closely track the non-receding horizon trajectory.   

    In the case of hard avoidance constraints, the shorter execution horizons were more 

efficient than the longer execution horizons.  This is explained by first realizing that the 

receding horizon controller updates the trajectory at the end of each execution horizon, 

which implies that the trajectories with the shorter horizons are updated more frequently 

than the longer horizons.  More frequent updates to the environment allow the aircraft to 

potentially make an earlier decision to divert around the obstacle.  However, this is not 

an absolute rule, as seen in Fig. 5.11, where the trajectory with the longest execution 

horizon tracks the non-receding horizon trajectory as well as the trajectory with the 

shortest execution horizon.  The conclusion should be that the trajectories with shorter 

execution horizon are more probable to make the most efficient decision to navigate 

around an obstacle with hard avoidance constraints. 

     In the case of soft avoidance constraints, the longer execution horizon trajectories 

are observed to be closer to the non-receding horizon trajectory.  There are possible 

explanations for this behavior.  First, the typical avoidance or mitigation maneuver for 

these types of obstacles is a climb or descent due to the fact that the obstacles are 

usually thin vertically and wide horizontally (they emulate areas of ice supersaturation).  

It is possible that the receding horizon strategy is not as effective in the vertical plane 

compared to the horizontal plane due to the extremely disparate scales of the vertical 

and horizontal motion of aircraft.  Second, the acceleration penalty in the detailed 

trajectory optimization might slow the climb and descent rates in the first few waypoints 

of the planning horizon.  If this is the case, the trajectories with short execution horizons 
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cannot build as high of a rate of climb as the trajectories with long execution horizons, 

leading to the behavior seen in Figs. 5.13 and 5.14. 

 

5.3 Sensitivity of Trajectory to Disturbance Dynamics 

Until now, the disturbances analyzed in this chapter have been static.  Dynamic 

obstacles add an additional dimension of realism and difficulty to the path planning 

problem.  This section will investigate the effect of planning horizon length and 

execution horizon length to obstacles that are dynamic.  The pathological obstacles of 

this section were designed to emulate the size and movement of thunderstorm cells, 

and are generically classified as large, medium, and small.  As before, Table 5.1 shows 

the sizes of the obstacles used in this analysis, where the characteristic length is 

determined by the length of the widest section of the obstacle.   

 

5.3.1   Effect of Planning Horizon Length 

The effect of planning horizon length on the overall shape and performance of receding 

horizon trajectories around dynamic obstacles of different scales is analyzed in this 

section.  The locations of the waypoints in the planning horizon are calculated subject to 

realistic vehicle dynamics and performance limitations.  See Chapter 4 for a detailed 

description of how the receding horizon controller handles dynamic obstacles.   

    Figure 5.16 shows the behavior of receding horizon trajectories of different planning 

horizon length in the presence of a dynamic large sized obstacle with hard avoidance 

constraints.  The avoidance region is the red box and there is a map of the United 
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States in the background to provide perspective.  The execution horizon for this 

example consists of 2 waypoints and the time step is 2.4 minutes.  The obstacle is 

moving in a south-eastern direction.  The non-receding horizon trajectory is theoretically 

the most optimal trajectory in the figure and is shown as the blue dashed line.  The 

trajectory with 24 waypoints in the planning horizon follows most closely to the non-

receding horizon trajectory, which passes to the north of the obstacle.  The trajectories 

with 8 and 16 waypoints in the planning horizon pass to the south of the obstacle, which 

is in the obstacle’s direction of motion.  The southern trajectories travel a much farther 

distance to get to the destination, and this corresponds to 10.1% and 9.8% more fuel 

burned than in the non-receding horizon trajectory.  In addition those trajectories also 

arrive approximately 18 and 15 minutes after the non-receding horizon trajectory.  The 

trajectory with 24 waypoints in the planning horizon only burned 2.6% more fuel than 

the non-receding horizon trajectory, and arrived 4 minutes later. 

     Figure 5.17 gives the sensitivity of receding horizon trajectories to different planning 

horizon lengths in the presence of a dynamic medium sized obstacle with hard 

avoidance constraints.  The avoidance region is the red box and there is a map of the 

United States in the background to provide perspective.  The execution horizon for this 

example consists of 2 waypoints and the time step is 2.4 minutes.  As before, the non-

receding horizon trajectory is shown as the blue dashed line.  The trajectories with 16 

and 12 waypoints in the planning horizon follow closely to the non-receding horizon 

trajectory, although the 16 waypoint trajectory is the closest.  The shorter planning 

horizon lengths, specifically 6 and 8 waypoints in this case, choose a path to the south 

of the obstacle.  The longer paths of the 6 and 8 waypoint trajectories correspond to 
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12.1% and 12.3% more fuel burned when compared to the non-receding horizon 

trajectory, respectively.  In addition those trajectories arrive approximately 24 and 25 

minutes after the non-receding horizon trajectory.  The trajectories with 12 and 16 

waypoints in the planning horizon burned 2.8% and 1.7% more fuel than the non-

receding horizon trajectory, respectively.  Also, when compared to the non-receding 

horizon trajectory, the 12 and 16 waypoint trajectories arrive 6 and 8 minutes later. 

     Figure 5.18 presents the effect of different planning horizon lengths on receding 

horizon trajectories in the presence of a dynamic small sized obstacle with hard 

avoidance constraints.  The avoidance region is the red box and there is a map of the 

United States in the background to provide perspective.  The execution horizon for this 

example consists of 2 waypoints and the time step is 2.4 minutes.  In this example, the 

trajectories with 8, 12, and 16 waypoints in the planning horizon all follow the same 

general path as the non-receding horizon trajectory.  Conversely, the trajectory with 6 

waypoints in the planning horizon passes to the south of the obstacle.  The southern 

deviation is not as severe in this example compared to the others because the obstacle 

is smaller.  The 6 waypoint trajectory burns 3.2% more fuel than the non-receding 

horizon trajectory.  The 8, 12, and 16 waypoint trajectories burn a negligible amount 

compared to the non-receding horizon trajectory, and all trajectories arrive at the 

destination at approximately the same time. 

 

5.3.2   Effect of Execution Horizon Length 

The effect of execution horizon length on the overall shape and performance of 

receding horizon trajectories around dynamic obstacles of different scales is analyzed in 
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this section.  As previously mentioned, the execution horizon is the number of waypoints 

in the planning horizon that are visited before the receding horizon controller updates 

the trajectory.  The length of the execution horizon was defined earlier in Eq. 5.2, and is 

dependent on the number of waypoints, the speed of the aircraft, and the size of the 

time step. 

     Figure 5.19 shows the behavior of receding horizon trajectories with different 

execution horizons around a large dynamic obstacle with hard avoidance constraints.  

The avoidance region is the red box and there is a map of the United States in the 

background to provide perspective.  The planning horizon for this example consists of 

12 waypoints and the time step is 2.4 minutes.  In this example none of the receding 

horizon trajectories follow the general shape of the non-receding horizon trajectory.  

Instead of changing course to the north to avoid the obstacle, they divert to the south, 

which is in the path of motion of the obstacle.  This significantly affects the trajectories 

where the 2, 6, and 8 waypoint trajectories burned 9.8%, 9.9%, and 9.9% more fuel 

than the non-receding horizon trajectory, respectively.  In addition, the receding horizon 

trajectories arrived at the destination 17, 18, and 18 minutes after the non-receding 

horizon trajectory, respectively. 

     Figure 5.20 gives the sensitivity of receding horizon trajectory performance to 

different execution horizons in the presence of a medium dynamic obstacle with hard 

avoidance constraints.  The avoidance region is the red box and there is a map of the 

United States in the background to provide perspective.  The planning horizon for this 

example consists of 12 waypoints and the time step is 2.4 minutes.  The receding 

horizon trajectories with longer execution horizons do not reroute south of the obstacle 
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as they did in Fig. 5.19.  Instead, they first adjust their route to go south of the obstacle, 

but then change direction close to the obstacle and pass to the north.  The trajectory 

with an execution horizon of 2 waypoints was the closest to the non-receding horizon 

trajectory, burning only 1.8% more fuel and arriving 6 minutes later.  The 3, 6, and 8 

waypoint trajectories were not quite as close, and they burned 4.2%, 4.4%, and 4.5% 

more fuel than the non-receding horizon trajectory.  Furthermore, the 3, 6, and 8 

waypoint trajectories arrived 9, 10, and 10 minutes later than the non-receding horizon 

trajectory. 

     Figure 5.21 presents the effect of different execution horizon lengths on receding 

horizon trajectory performance in the presence of a small dynamic obstacle with hard 

avoidance constraints.  The avoidance region is the red box and there is a map of the 

United States in the background to provide perspective.  The planning horizon for this 

example consists of 12 waypoints and the time step is 2.4 minutes.  In this example all 

of the receding horizon trajectories follow the same general path.  The trajectory with 8 

waypoints execution horizon shows a slight deviation over northeastern Kansas, and 

burned 1.1% more fuel than the non-receding horizon trajectory.  The receding horizon 

trajectories with 2, 4, and 6 waypoints in the execution horizon burned approximately 

the same amount of fuel as the non-receding horizon trajectory and arrived 

approximately 2 minutes later. 

     An additional comment on the effect of execution horizon on receding horizon 

trajectories in a dynamic environment is that the feasibility of the trajectory can be called 

into question if the execution horizon is too long.  If the environment is dynamic and 

unpredictable, a long execution horizon can make the trajectory vulnerable to obstacle 
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penetration due to infrequent updates of the planning horizon.  In other words, an 

obstacle could change its shape or dynamics and encroach on the aircraft before the 

receding horizon controller updates the environment.  This behavior was observed 

during extensive simulation of test case scenarios performed during this chapter. 

 

5.3.3   Summary of the Effect of Dynamic Disturbances 

Simulations were performed to analyze the sensitivity of receding horizon trajectory 

shape (length and curvature) to planning and execution horizon length in an 

environment containing dynamic obstacles.  This analysis only considered the case of 

dynamic hard avoidance constraints.  The general sensitivity between trajectory shape 

and planning and execution horizon length in a dynamic environment is similar to the 

sensitivity in a static environment: the receding horizon trajectory becomes is more 

efficient with long planning horizons and short execution horizons.  Similarly to the 

earlier analysis, the time step used in the simulations is 2.4 minutes and the maximum 

velocity of the aircraft is 470 knots. 

     The effect of planning horizon length on the trajectory shape was similar in trend but 

more substantial when compared to the static obstacle analysis.  The trajectories with 

longer planning horizons than the characteristic length of the obstacle made better 

course adjustment decisions, and the trajectories with the shorter planning horizons 

typically made poor decisions.  However, the poor decisions in the dynamic obstacle 

examples proved to be much more inefficient than in the static examples due to the fact 

that the poor decisions taken during the planning process often guided the aircraft in the 

path of the obstacle, further pushing the trajectory away from the optimal trajectory.   
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     The effect of execution horizon length on the receding horizon trajectories was also 

similar to the static obstacle examples, but much more severe.  When considering 

dynamic obstacles, especially ones where the motion might be unpredictable, it is 

extremely important to frequently update the environment in the receding horizon 

controller to maintain the feasibility of the trajectory.  The update rate of the receding 

horizon controller is directly related to the size of the execution horizon and the size of 

the time step.  Therefore, it is relatively straight forward to hypothesize that a receding 

horizon trajectory with a shorter execution horizon would perform better than a trajectory 

with a long execution horizon.  This behavior was observed in the simulations, where in 

general an execution horizon greater than 2 waypoints (with a time step of 2.4 minutes) 

caused significant differences in the trajectory.  In some cases the trajectory would be 

rendered infeasible due to the fact that the receding horizon controller would not update 

sufficiently quickly to track the progress of the dynamic obstacles. 

 

5.4 Receding Horizon Strategy for Multi-Scale Disturbances 

This chapter has shown that receding horizon control is very sensitive to planning 

horizon length, execution horizon length, and to the spatial and temporal scales of the 

environment.  Therefore, it is hard to choose a single “best” receding horizon strategy 

for a path planning problem of multiple scales.  The safest strategy would be to have a 

small time step and small execution horizon to ensure collision avoidance and trajectory 

feasibility in the presence of dynamic obstacles.  However, it was shown earlier that a 

long planning horizon length is needed to have an efficient trajectory.  The combination 

of a long planning horizon length and a small time step leads to many waypoints in the 
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planning horizon, which is not efficient computationally (see Chapter 4.4), and 

potentially not tractable in a real time setting.  Therefore, this research proposes an 

adaptive receding horizon strategy that switches between a set of planning horizons, 

execution horizons, and time step sizes based on the obstacle environment to ensure 

trajectory feasibility and to promote efficiency. 

     This strategy is based on the premise that the aircraft is aware of what type of 

obstacle it is closest to or most effected by, so that it can dynamically select the best 

planning horizon, execution horizon, and time step to fly the most efficient and safe 

trajectory.  This strategy uses the results presented earlier in this chapter. 

     It was found that in the case of large and medium sized obstacles with soft 

avoidance constraints the most optimal trajectory is generated with a long planning 

horizon and a long execution horizon.  This type of obstacle was designed to emulate 

an area of ice supersaturation, which is where persistent contrails are formed.  These 

areas are the largest, and most consistent disturbance appearing in this path planning 

problem, therefore it will serve as the default scale, known in this dissertation as Mode 

(1).  A second reason for making this the default mode is that persistent contrail 

formation is not a safety of flight issue, and therefore switching from its mode of 

operation does not introduce any risk to the trajectory. 

     The second scale considered by the controller is the case of a large, medium, or 

small obstacle with hard avoidance constraints.  These obstacles are designed to 

emulate thunderstorms, which are more threatening to safety, and therefore this scale 

takes priority over the default scale.  If the aircraft is within a specified radius of a 

thunderstorm, the receding horizon controller switches to a smaller execution horizon, 
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which updates the environment more frequently and promotes a more efficient and safe 

trajectory around the obstacle.  This scale is known as Mode (2). 

    The third and final scale considered by the controller is the case of a tiny obstacle 

with hard avoidance constraints.  Avoidance of this obstacle is intended to imitate 

collision avoidance, which is the most safety critical, and therefore takes priority over all 

other scales.   If the aircraft is within a specified radius of another aircraft, the receding 

horizon controller switches to a smaller time step, which updates the environment more 

frequently and promotes a safe route around the obstacle.  This scale is known as 

Mode (3). 

     Simulations were performed to test the viability of this strategy.  Table 5.3 presents 

the modes used by the receding horizon controller.  Figure 5.22 shows the performance 

of the new receding horizon strategy compared to two examples with fixed planning 

horizon, execution horizon, and time step.  The hard avoidance regions are shown as 

red boxes and the soft avoidance regions are shown as yellow boxes.  The top subplot 

is a horizontal representation of the trajectories, shown with a map of the United States 

in the background.  The bottom subplot is a vertical representation of the trajectories.  

The benefit of having a receding horizon strategy that can adapt to the type of obstacle 

in the environment is apparent in the figure, as the adaptive strategy shares the 

favorable characteristics of both the Mode (1) and Mode (2) trajectories.   

     The Mode (1) trajectory was generated with a planning horizon of 12 waypoints and 

an execution horizon of 6 waypoints.  This trajectory is designed with receding horizon 

characteristics that perform well with soft avoidance areas, and this behavior is seen by 

its ability to climb over the last soft obstacle with a minimal path length in the obstacle.  
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However, the execution horizon of this trajectory is poorly suited for an environment with 

dynamic hard constraints, which is visible by the overly conservative route generated 

around the three red boxes.   

     The Mode (2) trajectory was optimized with a planning horizon of 12 waypoints and 

an execution horizon of 2 waypoints.  This trajectory is suited to traverse an 

environment containing hard and dynamic obstacles because the receding horizon 

controller is able to update the environment frequently.  The shape of this trajectory was 

as expected; it was much more efficient navigating the three red boxes than the Mode 

(1) trajectory.  However, the Mode (2) trajectory was not as efficient with the soft 

obstacles as the Mode (1) trajectory.  The Mode (2) trajectory consisted of 157 nm of 

path length in the last soft obstacle, compared to only 9 nm for the Mode (1) trajectory. 

     The adaptive strategy presented in this section was effective in combining the 

positive qualities of the two fixed parameter trajectories.  The adaptive trajectory started 

with the same planning horizon and execution horizon as the Mode (1) trajectory, and 

then switched to the Mode (2) planning and execution horizon when the hard obstacles 

were within 600 nm of the aircraft.  At this point, the trajectory changes from the Mode 

(1) trajectory to the Mode (2) trajectory, which can be seen in Fig. 5.22 at a position 

over the western border of Missouri.  The adaptive trajectory maintains the Mode (2) 

planning and execution horizons until the aircraft has passed the red boxes, at which 

point the planning and execution horizon switch back to the Mode (1) values.  When the 

adaptive trajectory encounters the last soft obstacle, it behaves like the Mode (1) 

trajectory and climbs over the region with minimal path length in the obstacle.   
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     The adaptive trajectory outperformed the Mode (1) or Mode (2) trajectories.  It only 

burned 0.4% more fuel than the Mode (2) trajectory, and 3.6% less fuel than the Mode 

(1) trajectory.  In addition, the adaptive trajectory created 17 nm of path length within the 

obstacles, compared to 202 nm for the Mode (2) trajectory and 9 nm for the Mode (1) 

trajectory, although it should be noted that the Mode (1) trajectory completely diverted 

around the first soft obstacle. 

 

5.5 Summary 

This chapter presented the sensitivity of the receding horizon control algorithm 

developed in this research to disturbances of multiple spatial and temporal scales.  It 

was observed that, in general, long planning horizons perform better than short planning 

horizons.  In addition, short execution horizons are superior when dynamic obstacles 

are present in the environment due to the faster update rate of the environment in the 

receding horizon controller.  When considering the case of three-dimensional soft 

avoidance, longer execution horizons were observed to be more efficient in climbs and 

descents around the obstacles.  An adaptive receding horizon strategy was developed 

from these results in an attempt to make a more general receding horizon controller, 

and the adaptive receding horizon strategy was shown to be both agile and effective in 

planning a path around obstacles of multiple scales. 
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Table 5.1. Characteristic lengths in 
nautical miles of the obstacles 
analyzed for this section. 
 Soft (nm) Hard (nm) 
large 509.1 339.4 
medium 349.9 226.8 
small 189.7 108.2 
tiny N/A 10.0 

 

 

Table 5.2. Maximum planning 
horizon lengths for number of 
waypoints in the planning 
horizon.  ∆t = 2.4 minutes. 

Np Max Length (nm) 
24 451.2 
16 300.8 
12 225.6 
8 150.4 
6 112.8 
4 75.2 

 

 

Table 5.3. A description of the modes used to switch 
between receding horizon parameters based on the 
scales in the environment. 
Mode (1) (2) (3) 
Np 12 12 12 
Ne 6 2 2 
∆t (min) 2.4 2.4 0.6 
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Figure 5.1. Simple example showing the relationship between the 
detailed trajectory (green), the line of sight (blue), and the cost-to-go 
(magenta). 

 

 

 
Figure 5.2. Depiction of the characteristic length for a generic square 
obstacle. 
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Figure 5.3. Comparison of trajectories (Ne = 2, dt = 2.4 min) around a 
large sized obstacle with hard avoidance constraints. 

 

 
Figure 5.4. Comparison of trajectories (Ne = 2, dt = 2.4 min) around a 
medium sized obstacle with hard avoidance constraints. 
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Figure 5.5. Comparison of trajectories (Ne = 2, dt = 2.4 min) around a 
small sized obstacle with hard avoidance constraints. 

 

 
Figure 5.6. Situation in which the path planning algorithm finds a feasible trajectory 
through the safety zone of another aircraft because the time step is too large. 
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Figure 5.7. Comparison of trajectories (Ne = 2, dt = 2.4 min) around a large sized 
obstacle with soft avoidance constraints. 
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Figure 5.8. Comparison of trajectories (Ne = 2, dt = 2.4 min) around a medium sized 
obstacle with soft avoidance constraints. 
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Figure 5.9. Comparison of trajectories (Ne = 2, dt = 2.4 min) around a small sized 
obstacle with soft avoidance constraints. 
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Figure 5.10. Comparison of trajectories (Np = 12, dt = 2.4 min) around 
a large sized obstacle with hard avoidance constraints. 

 

 
Figure 5.11. Comparison of trajectories (Np = 16, dt = 2.4 min) around 
a medium sized obstacle with hard avoidance constraints. 
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Figure 5.12. Comparison of trajectories (Np = 12, dt = 2.4 min) around 
a small sized obstacle with hard avoidance constraints. 
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Figure 5.13. Comparison of trajectories (Np = 16, dt = 2.4 min) around a large sized 
obstacle with soft avoidance constraints. 
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Figure 5.14. Comparison of trajectories (Np = 12, dt = 2.4 min) around a medium sized 
obstacle with soft avoidance constraints. 
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Figure 5.15. Comparison of trajectories (Np = 12, dt = 2.4 min) around a small sized 
obstacle with soft avoidance constraints. 
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t = 0 t = 36 min 

t = 72 min t = 108 min 

t = 144 min t = end 
Figure 5.16. Comparison of trajectories (Ne = 2, dt = 2.4 min) around a large sized 
dynamic obstacle with hard avoidance constraints. 
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t = 0 t = 36 min 

t = 72 min t = 108 min 

t = 144 min t = end 
Figure 5.17. Comparison of trajectories (Ne = 2, dt = 2.4 min) around a medium sized 
dynamic obstacle with hard avoidance constraints. 
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t = 0 t = 36 min 

t = 72 min t = 108 min 

t = 144 min t = end 
Figure 5.18. Comparison of trajectories (Ne = 2, dt = 2.4 min) around a small sized 
dynamic obstacle with hard avoidance constraints. 
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t = 0 t = 36 min 

t = 72 min t = 108 min 

t = 144 min t = end 
Figure 5.19. Comparison of trajectories (Np = 12, dt = 2.4 min) around a large sized 
dynamic obstacle with hard avoidance constraints. 
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t = 0 t = 36 min 

t = 72 min t = 108 min 

t = 144 min t = end 
Figure 5.20. Comparison of trajectories (Np = 12, dt = 2.4 min) around a medium sized 
dynamic obstacle with hard avoidance constraints. 
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t = 0 t = 36 min 

t = 72 min t = 108 min 

t = 144 min t = end 
Figure 5.21. Comparison of trajectories (Np = 12, dt = 2.4 min) around a small sized 
dynamic obstacle with hard avoidance constraints. 
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t = 0 t = 36 min 

t = 72 min t = 108 min 

t = 144 min t = end 
Figure 5.22. Comparison of the adaptive receding horizon strategy and receding horizon 
strategies of fixed parameters . 
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Chapter 6 

Practical Results and Additional 
Applications 
 
6.1 Introduction 

This chapter presents applications of the receding horizon path planning algorithm 

developed in this dissertation.  One of the objectives of this research is to develop a 

method to reduce the environmental impact of aviation.  Persistent contrail formation is 

one of the larger effectors on the environment, and its mitigation is studied as an 

application of the receding horizon mixed-integer linear programming (RH-MILP) path 

planner developed in this research.  Persistent contrail mitigating trajectories are 

generated using RH-MILP and studied in depth for a single route example, and then the 

aggregate effect of the strategy is analyzed using data from multiple days.  The results 

of the persistent contrail mitigation application are compared to existing contrail 

mitigation techniques in the literature.   

     Additionally, convective weather is a disturbance that causes a loss of efficiency in 

the National Airspace System (NAS).  Fuel optimal routes around areas of convective 

weather are generated, and the performance of these trajectories is discussed.  The 

convective weather and persistent contrail scenarios are combined to form a multi-scale 

path planning problem to generate minimum fuel trajectories for reduced environmental 

impact.  Additional applications of the path planner are introduced, but not quantified. 



 125

 

6.2 RH-MILP for Persistent Contrail Mitigation 

The formation of persistent contrails is theorized to be one of the larger effectors on the 

environment from aviation.  Contrails form when the exhaust and entrained air pass 

through a thermodynamic state that is saturated with respect to water. Persistent 

contrails form when an aircraft creates a contrail in a specific area of the atmosphere 

called an ice super saturated region (ISSR), where the relative humidity with respect to 

ice (RHi) is greater than or equal to 100%.  In theory, if an aircraft avoids flying in 

ISSRs, it will not produce persistent contrails.  The examples of this section use the 

atmospheric model discussed in Chapter 2, where the primary source of data is the 

Rapid Update Cycle (RUC).  A single flight example is presented first, followed by the 

aggregate performance of the path planner, which accounts for data from multiple days.  

Lastly, the results are compared against existing contrail mitigation strategies in the 

literature. 

 

6.2.1   Example Persistent Contrail Mitigation Scenario 

This example considers a single flight from O’Hare International Airport (ORD) to Los 

Angeles International Airport (LAX) using atmospheric data from November 17, 2001.  

The objective of this example was to find a fuel optimal trajectory for this route while 

minimizing path length in areas containing RHi > 100%.  The fuel burn cost was derived 

from the model presented in Chapter 3.2, and the formulations of Chapter 3.4 describe 
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the dynamical and aircraft performance constraints.  Table 6.1 lists the receding horizon 

parameters and the aircraft performance limitations used in this example. 

     Figures 6.1 and 6.2 show trajectories overlaid on two-dimensional contour plots of 

the RHi field at different altitudes.  The blue, black, and red trajectories correspond to 

optimizations with 100%, 50%, and 0% contrail mitigation, respectively.  The trajectories 

were initiated at approximately 34,000 ft, it should be noted that the red and black 

trajectories are overlaid on each other in Figs. 6.1 and 6.2.  The 0% and 50% contrail 

mitigation trajectories follow an almost identical straight line trajectory from ORD to LAX 

with the only difference being in the altitude.  The 100% contrail mitigation trajectory 

was forced to adjust its horizontal flight path in addition to its altitude to avoid flight into 

an area of RHi > 100%. 

 Figures 6.3 and 6.4 shows the aircraft and contrail mitigation performance associated 

with the trajectories presented in Figs. 6.1 and 6.2.  Figure 6.3(a) shows the velocity 

profiles of the trajectories, and it is easy to see that the Mach numbers of the 0% and 

50% trajectories (red and black respectively) remain constant at roughly 0.78.  On the 

other hand, due to a longer flight path, the 100% trajectory (shown in blue) increases its 

Mach number in an attempt to arrive in LAX at the same time as the 0% trajectory.  

Figure 6.3(b) shows the altitude profiles of the trajectories.  The 0% trajectory does not 

change its altitude to avoid contrail formation.  The altitude increases on the 0% 

trajectory because the nominal flight condition changes for the step climb procedure.  

The 50% and 100% trajectories have the same nominal flight condition as the 0% but 

adjust their altitude to fly either above or under areas of RHi > 100%.  The persistent 

contrail length produced by each trajectory was normalized by the straight line distance 
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between ORD and LAX.  This normalized contrail length was 0.42 for the 0% trajectory, 

0.22 for the 50% trajectory, and 0.0 for the 100% trajectory. 

 Table 6.2 compares the performance of the three trajectories presented by this 

example.  The trajectory with 100% contrail penalty avoided producing any persistent 

contrails, but it consumed significantly more fuel than the other two trajectories.  The 

50% contrail penalty trajectory mitigated contrail formation by almost 50% by altering its 

altitude and only had a slight increase in fuel burn.   

 

6.2.2   Aggregate Route Results 

In Chapter 2, it was mentioned that the likelihood of existence of an ISSR depends on 

the time of day and also the time of year.  Figure 6.5 shows the dependence of 

persistent contrail frequency to the time of year [55, 80].  To understand the complete 

tradeoff between persistent contrail mitigation and increased fuel burn, this dependency 

needs to be considered.  Therefore, a selection of data from different times of day and 

times of year were compiled and tested using the path planning algorithm developed in 

this research.  The example uses the same ORD-LAX departure/arrival pair as before.  

The results of this study are given in Table 6.3.  There are 20 days of data, from 4 

distinct months at different times of the year.  The table presents the path length of 

persistent contrails for a trajectory with no contrail mitigation logic, the path length of 

persistent contrails produced with a contrail mitigation penalty in the algorithm, and the 

increased fuel burn for the persistent contrail mitigation trajectories.   

     Ideally, a year’s worth of data would be collected and analyzed to find the yearly 

average increase in fuel burn and percent of persistent contrails mitigated, and this is 
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recommended as a future extension of this dissertation.  In lieu of 365 days of data, 20 

days of data were selected to represent 4 weeks of data at different times of the year in 

an attempt to capture the seasonal variation in contrail production.  It was found that the 

strategy presented in this dissertation was able to mitigate 58% of persistent contrails 

with a 0.48% increase in fuel burn.  Of the 20 days of data, 9 were found to be 

conducive to persistent contrail formation, which is in the ballpark of the data presented 

in Fig. 6.5.  

 

6.2.3   Assessment of Operational Strategies 

Operational strategies for persistent contrail mitigation have been studied in the past.  

Klima showed that non-optimal contrail mitigation strategies can reduce persistent 

contrail coverage [21]. For the case of individual rerouting (each aircraft is rerouted 

independently), persistent contrails were reduced 65%-80%. For the case of weekly 

rerouting (custom routes are changed on a weekly basis), persistent contrails were 

reduced 55%-85% with a 1%-2% increase in operational costs. Other strategies 

proposed by Klima include routing aircraft away from the humid tropopause, flying more 

fuel efficient routes, and choosing a more northerly route for transatlantic flights [21].       

     Another strategy takes advantage of the geometry of the regions of ice super 

saturation.  Because regions of ice supersaturation are very thin, it has been proposed 

that altitude change is the best method to avoid contrail production. Mannstein et al. 

showed that small changes in aircraft altitude can significantly reduce the impact of 

contrails [22]. Williams and Noland also assessed the viability of altitude changes on 

contrail formation [23]. Fichter et al. found that contrail coverage could be reduced 
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approximately 45% by flying 6000 feet lower on average with a 6% penalty in fuel burn 

[24]. 

     This research is the first strategy to use optimization methods to determine the best 

trajectory for contrail mitigation and fuel conservation.  However, the drawback to this 

strategy is that it requires a large infrastructure and system improvement to the NAS for 

implementation, whereas some of the strategies in the literature do not.  Therefore, the 

optimal trajectories of this research can help determine the most effective method that 

can be implemented easily.  A finding of this research is that the optimal method for 

mitigating and/or avoiding persistent contrail formation is a simple attitude adjustment.  

This corroborates a subset of the existing literature [22-24] on operational methods for 

persistent contrail mitigation.  Some of these methods recommend placing altitude 

restrictions, or artificial ceilings, on flights that would create persistent contrails [23, 24].  

However, the infrequency of ice super saturated regions lends to the idea that altitude 

restrictions are not the most efficient solution.  For example, the study of Fichter et al. 

found that persistent contrails can be reduced 45% by flying 6000 feet lower on average 

with a 6% penalty in fuel burn [24], which is a much larger performance penalty than 

showed by this research.  The study that most closely aligns with the results of this 

research is the work of Mannstein et al, which calls for real-time altitude adjustments 

around ice super saturated regions once the region was sensed by the aircraft [22]. 

 

6.3 RH-MILP for Convective Weather Avoidance 

Thunderstorms are a leading cause of delay in the NAS, where the delays are a result 

of ground holds, in-flight holds, and general rerouting of aircraft around storms.  The 



 130

increased flight time corresponding to both in-flight holds and rerouting leads to 

increased environmental impact due to extra fuel burn emissions.  This section presents 

an application of the path planning algorithm developed in this research to thunderstorm 

avoidance.  The path planner generates minimum fuel routes around areas of 

convection that would hopefully alleviate some of the strain on the NAS due to 

thunderstorms. 

    Pilots have been observed to change their route to avoid thunderstorms with a VIP 

rating of 3 or greater.  In this research, areas with a VIP ≥ 3 were represented as 

cuboids, and flight through these regions was precluded with hard avoidance 

constraints.  The dynamics of a thunderstorm are very complicated and can be 

extremely hard to predict.  The path planner used the procedure outlined in Chapter 2 to 

account for the thunderstorm dynamics, where the general movement of the 

thunderstorm was predicted based on an extrapolation of the previous two time steps, 

and a margin of safety was implemented depending on the level of unpredictability of 

the storm.  This section presents an example of a single flight which encounters 

thunderstorms en-route.  The performance of the path planning algorithm is analyzed 

for the results of this application.  Lastly, the performance of the path planner is 

observed in a scenario that includes both persistent contrail mitigation and convective 

weather avoidance. 

 

6.3.1   Example Convective Weather Avoidance Scenario 

This example considers a single flight from O’Hare International Airport (ORD) to Los 

Angeles International Airport (LAX) using atmospheric data from May 7, 2008.  The 
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objective of this example was to find a fuel optimal trajectory for this route while 

avoiding flight through a storm with a VIP level three or greater.  The fuel burn cost was 

derived from the model presented in Chapter 3.2, and the formulations of Chapter 3.4 

describe the dynamical and aircraft performance constraints.  The receding horizon 

parameters are the same as Table 6.1 except that the execution horizon was set to 2 

waypoints.   

     Figure 6.6 shows the shape of the flight path in the presence of en-route convective 

weather, where each diagram in Fig. 6.6 corresponds to a different time.  The 

thunderstorms are represented in Fig. 6.6 as green and yellow shaded areas, where a 

green area corresponds to VIP < 3 and a yellow area depicts an area of VIP ≥ 3.  There 

is a map of the United States in the background to provide perspective, and the 

trajectory is shown by a red dashed line.  At the time of departure, the thunderstorms 

are located in a line extending from western Kansas to central Wisconsin, and the 

general movement of the storms is to the east.  It is apparent in Fig. 6.6(b) that the 

trajectory is going to encounter the thunderstorms, and adjusts its route to pass to the 

south of the storms, as is shown in Fig. 6.6(c).  As is seen in Fig. 6.6(f), the path planner 

successfully negotiated the disturbance of convective weather. 

 

6.3.2   Combined Strategy for Reduced Environmental Impact 

This example considers a single flight from O’Hare International Airport (ORD) to Los 

Angeles International Airport (LAX) using relative humidity data from November 17, 

2001, and convective weather data from May 7, 2008.  The objective of this example is 

to find a fuel optimal trajectory for this route while avoiding flight through a storm with a 
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VIP level three or greater, and assigning a penalty to flight through an area of RHi ≥ 

100%.  The fuel burn cost is derived from the model presented in Chapter 3.2, and the 

formulations of Chapter 3.4 describe the dynamical and aircraft performance 

constraints.  This trajectory is generated using the adaptive strategy described in 

Chapter 5. 

     Figures 6.7-6.12 show the shape of the flight path in the presence of en-route 

convective weather and persistent contrail mitigation constraints, where each figure 

corresponds to a different time.  The thunderstorms are represented as green and 

yellow shaded areas, where a green area corresponds to VIL < 3 and a yellow area 

depicts an area of VIL ≥ 3. Areas of ice super saturation are shown by red shading, 

based on the RHi field at approximately 34,000 feet.  Three trajectories of different 

persistent contrail formation penalty are compared, and the results are shown in Table 

6.4.  All three trajectories follow the same path in the horizontal plane, which is the 

same as the horizontal path generated in Fig. 6.6.  The differences between the 

trajectories can be seen in the vertical plane, where the different persistent contrail 

weightings cause the path planner to adjust altitude to control the amount of path length 

within an area of ice super saturation.  The trajectory with no penalty on contrail 

formation follows the nominal step climb profile, whereas the trajectory with the 

persistent contrail penalty tuned to 50% avoidance continues its climb at the first step 

climb point to a higher altitude above the area of RHi ≥ 100%.  The 100% persistent 

contrail avoidance trajectory starts its climb over the ice super saturation regions much 

earlier, eliminating the majority of the persistent contrails.  The 0% avoidance trajectory 

was used as a baseline to examine the tradeoff between persistent contrail mitigation 
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and increased fuel burn.  The 0% avoidance trajectory theoretically created persistent 

contrails with a combined length of 763 nm, compared to 544 nm for the 50% avoidance 

trajectory and 80 nm for the 100% avoidance trajectory.  The 50% avoidance trajectory 

burned 0.9% more fuel than the 0% trajectory, and the 100% avoidance trajectory 

burned 2.1% more fuel than the baseline. 

 

6.4 Additional Applications 

In addition to the persistent contrail mitigation and persistent contrail avoidance 

applications presented in this chapter, there are other potentially useful applications of 

this research.  The three additional applications introduced in this section are sonic 

boom mitigation, turbulence avoidance, and aircraft icing avoidance.  The sonic boom is 

a design driver for the development of supersonic transport because of possible 

increases in noise pollution along the flight path, especially over land routes.  

Turbulence and aircraft icing have recently contributed to accidents in air transportation.  

This section outlines how the path planning algorithm developed in the research could 

be applied to these issues in aviation. 

 

6.4.1   Sonic Boom Impact Mitigation 

Traditionally, noise impacts are concentrated to areas very close to airports, where the 

sound of arriving and departing aircraft affect the nearby population.  However, with a 

new emphasis on supersonic flight, the noise generated from a sonic boom will make 

noise pollution a more widespread impact [81].  One strategy proposed to mitigate the 
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impact of the sonic boom is to avoid repeated overflight of the same region, which 

essentially attempts to limit an area’s exposure to sonic booms [82].  For example, 

consider an arrival-departure pair of Teterboro, NJ, and San Jose, CA.  If the optimal 

roundtrip is flown 4 times per day, then the same points along the overland trajectory 

will be subjected to the sustained sonic boom impact 8 times per day.  This number can 

be reduced by restricting flight over the previously flown trajectories of the day.    

    Sonic boom mitigation can be accomplished using the path planning algorithm 

described in this research by coding the “boom carpet” region of a trajectory with 

avoidance constraints, and assigning a penalty to subsequent flights for overlapping 

boom carpets.  A boom carpet is the area of ground where the sonic boom is audible.  

Figure 6.13 shows a simulation of this scenario, where the first trajectory tracks a great-

circle trajectory from Teterboro to San Jose, and the return flight minimizes the overlap 

of the boom carpet regions, which diminishes boom carpet areas based on the previous 

overflight. 

 

6.4.2   Turbulence Avoidance 

Turbulence is a common occurrence on commercial flights, and is widely recognized as 

the primary cause of injuries to the passengers and crew onboard commercial aircraft.  

There are many causes of turbulence, such as thunderstorms, mountain waves, and 

clear air turbulence.  In addition, aircraft may encounter turbulence anywhere, including 

in remote areas where the turbulence forecasts lack the necessary resolution to prevent 

an incident due to turbulence.  The recent crash of Air France flight 447 on June 1, 2009 

has highlighted the importance of avoiding en-route turbulence.  Although the cause of 
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the crash is still uncertain, it is believed that the aircraft encountered severe turbulence 

and crashed off the cost of Brazil.  The crash occurred in a remote area of the ocean, 

where there is limited weather information available to pilots. 

     The National Center for Atmospheric Research (NCAR) has started research to 

develop a global forecast system to predict areas of turbulence [83].  Figure 6.14 shows 

some results of recent NCAR research [84], specifically a prediction of the turbulence 

encountered by Air France 441 on June 1, 2009.  NCAR is developing the forecast for 

implementation into the Next Generation Air Transportation System’s planned 4-D 

aviation weather database, and these data are a natural application of the path planning 

algorithm developed in this dissertation.  The areas of predicted turbulence can be 

coded with hard avoidance constraints to preclude any feasible trajectory from the area, 

and provide an additional margin of safety to commercial flights. 

 

6.4.3   Icing Avoidance 

Aircraft icing is widely recognized as a significant hazard to aircraft operations.  During 

the years 1990 to 2005, 35,317 aircraft accidents and incidents were reported in the 

National Transportation Safety Board (NTSB) accident database [85]. Out of these 

35,317 accidents and incidents, 803 were related to flight into icing conditions.  Of the 

accidents involving structural icing, 18 occurred during part 121 (commercial) 

operations, and 91 occurred during part 135 (on-demand) operations.  According to the 

database, the effects of icing are not limited to smaller aircraft.  Transport category 

aircraft including mid-size jet aircraft, regional jets, and turboprops have all experienced 

problems with icing.  The most recent fatal accidents involving a transport category 
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aircraft occurred on February 12, 2009 and January 9, 1997.  On February 12, 2009, 

Colgan 3407 crashed on final approach to Buffalo Niagara International Airport due to 

an inadvertent stall partially caused by flight into icing conditions.  On January 9, 1997, 

Comair 3272 entered icing conditions and departed controlled flight on approach to 

Detroit Metropolitan Wayne County Airport.   

     The path planning algorithm developed in this research may be applied to icing 

avoidance given knowledge of where the icing conditions exist.  The Current Icing 

Product (CIP) combines data from multiple sources to create a detailed three-

dimensional hourly forecast of the potential for icing and supercooled large droplet 

(SLD) conditions [86].  Figure 6.15 shows an output of the CIP that could be used to 

model the avoidance regions of the path planner.  Note that the SLD conditions could 

be treated with hard constraints, and the other areas of icing could be treated as soft 

constraints with a penalty function. 

 

6.5 Summary 

This chapter presented practical applications and simulation results of the path planning 

algorithm developed in this dissertation.  The algorithm proved to be successful in 

negotiating an environment with a persistent contrail formation penalty, as well as 

convective weather avoidance constraints.  The performance of the path planning 

algorithm in the persistent contrail mitigation scenario was analyzed for multiple days to 

investigate the operational feasibility of persistent contrail mitigation.  The trajectories 

generated with the path planner were compared to existing non-optimal contrail 

mitigation strategies to seek a best near term solution for persistent contrail mitigation.  
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Additional applications of the path planning algorithm were introduced and remain to be 

studied in detail in future work. 
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Table 6.1. Receding horizon parameters and aircraft performance limits. 
Number of steps in planning horizon (Np) 12 

Number of steps in the execution horizon (Ne) 6 
Time step size (∆t) 3 min 

Maximum en-route velocity (Vmax) 470 knots 
Minimum en-route velocity (Vmin) 417 knots 

Maximum altitude (zmax) 42,000 ft 
Minimum altitude (zmin) 28,000 ft 

 

 

Table 6.2.  Comparison of receding horizon trajectory performance. 
 Contrail Penalty 0% Contrail Penalty 

50% 
Contrail Penalty 

100% 
Max. Velocity 454.1 knots 454.1 knots 467.3 knots 
Avg. Velocity 450.6 knots 450.6 knots 464.8 knots 
Total Fuel Burn 20,431 lbs 20,734 lbs 21,695 lbs 
Flight Time 3.55 hrs 3.55 hrs 3.60 hrs 
Normalized Contrail 
Length 0.42 0.22 0.00 
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Table 6.3.  Performance comparison of trajectories generated with data from different 
days. 
Date: 11/14/2001 11/15/2001 11/16/2001 11/17/2001 11/18/2001
Path length of 
persistent contrails 
(no mitigation) (nm) 

0 0 264 375 132 

Path length of 
persistent contrails 
(with mitigation) 
(nm) 

0 0 87 202 65 

Increase fuel burn 
(%) 0 0 0.6% 1.5% 0.4% 

      
Date: 1/12/2002 1/13/2002 1/14/2002 1/15/2002 1/16/2002 
Path length of 
persistent contrails 
(no mitigation) (nm) 

0 402 176 214 0 

Path length of 
persistent contrails 
(with mitigation) 
(nm) 

0 230 38 55 0 

Increase fuel burn 
(%) 0 0.8% 1.2% 1.3% 0 

      
Date: 5/12/2002 5/13/2002 5/14/2002 5/15/2002 5/16/2002 
Path length of 
persistent contrails 
(no mitigation) (nm) 

129 0 0 0 64 

Path length of 
persistent contrails 
(with mitigation) 
(nm) 

55 0 0 0 23 

Increase fuel burn 
(%) 0.5% 0 0 0 0.4% 

      
Date: 9/12/2002 9/13/2002 9/14/2002 9/15/2002 9/16/2002 
Path length of 
persistent contrails 
(no mitigation) (nm) 

0 168 0 0 0 

Path length of 
persistent contrails 
(with mitigation) 
(nm) 

0 50 0 0 0 

Increase fuel burn 
(%) 0 0.8% 0 0 0 
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Table 6.4.  Comparison of receding horizon trajectory performance. 
 Contrail Penalty 0% Contrail Penalty 

50% 
Contrail Penalty 

100% 
Max. Velocity 464.3 knots 464.3 knots 464.3 knots 
Avg. Velocity 453.6 knots 453.6 knots 453.6 knots 
Total Fuel Burn 21,367 lbs 21,559 lbs 21,816 lbs 
Flight Time 3.65 hrs 3.65 hrs 3.66 hrs 
Normalized Contrail 
Length 0.48 0.32 0.04 
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(b) 

Figure 6.1.  Fuel optimal trajectories overlaid on contour plots of the Rhi field at times of 
(a) 1730Z, (b) 1800Z.  A map showing the boundaries of North America is in the 
background.   The blue line corresponds to 100% avoidance, the black line to 50% 
avoidance, and the red line to 0% avoidance. 
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(b) 

Figure 6.2.  Fuel optimal trajectories overlaid on contour plots of the Rhi field at times of 
(a) 1900Z, and (b) 1940Z.  A map showing the boundaries of North America is in the 
background.   The blue line corresponds to 100% avoidance, the black line to 50% 
avoidance, and the red line to 0% avoidance. 
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(b) 

Figure 6.3.  Aircraft performance: (a) velocity time history, (b) altitude time history.  The 
blue line corresponds to 100% avoidance, the black line to 50% avoidance, and the red 
line to 0% avoidance. 
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(b) 

Figure 6.4.  Aircraft performance: (a) fuel burn time history, (b) persistent contrail 
formation bar graph.  The blue line corresponds to 100% avoidance, the black line to 
50% avoidance, and the red line to 0% avoidance. 
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Figure 6.5. Yearly cycle of total distance traveled (a) and contrail frequency (b).   The 
different shading in (a) indicates different times of day, and the heavy black line in (b) 
shows the seasonal mean [55]. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 6.6. Receding horizon trajectory for convective weather avoidance.  This 
trajectory was generated with a planning horizon of 12 and an execution horizon of 2. 
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Figure 6.7. Receding horizon trajectories for a scenario involving both persistent 
contrail mitigation and convective weather avoidance (t = 0 min). 
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Figure 6.8. Receding horizon trajectories for a scenario involving both persistent 
contrail mitigation and convective weather avoidance (t = 36 min). 
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Figure 6.9. Receding horizon trajectories for a scenario involving both persistent 
contrail mitigation and convective weather avoidance (t = 72 min). 
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Figure 6.10. Receding horizon trajectories for a scenario involving both persistent 
contrail mitigation and convective weather avoidance (t = 108 min). 
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Figure 6.11. Receding horizon trajectories for a scenario involving both persistent 
contrail mitigation and convective weather avoidance (t = 144 min). 
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Figure 6.12. Receding horizon trajectories for a scenario involving both persistent 
contrail mitigation and convective weather avoidance (t = end). 
 

 

 



 153

Figure 6.13. Sonic boom impact mitigation trajectories.  KTEB is in Teterboro, NJ, and KSJC 
is in San Jose, CA. 
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Figure 6.14.  Turbulence forecast for June 1, 2009 [74].  The dashed line is the flight 
path of Air France 447. 
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Figure 6.15. Current Icing Product forecast for March 5, 2010. 
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Chapter 7 

Summary, Conclusions, and 
Recommendations 
 
7.1 Summary 

This dissertation presented a path planning framework to deal with trajectory generation 

problems in the presence of multi-scale obstacles.  Chapter 1 introduced path planning 

in the context of mitigating environmental impact while increasing safety and efficiency 

in the national air transportation system.  It also provided the literature that helped frame 

the development of the research.  Chapter 2 introduced the atmospheric data used to 

model the environment in the path planning chapters of the dissertation.  It also 

discussed the mechanism of contrail formation, and provided details on the source of 

the relative humidity data as well as the persistent contrail formation model.  The 

convective weather model was explained, and the source of radar data was discussed.  

Chapter 3 showed the development of a three-dimensional path planning problem.  

Much of this path planning algorithm followed from existing work [40, 41]; however, this 

chapter developed a much more realistic aircraft performance and fuel burn model than 

previously employed, and analyzed the difference between quadratic and linear cost 

functions.  Chapter 4 presented a novel cost-to-go formulation designed for the 

inclusion of soft avoidance constraints in the receding horizon MILP.  This chapter 

stepped through the development of the algorithm and provided simulation results for an 
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example scenario.  An analysis of the algorithm was conducted to describe how the 

running time increased with problem size.  Chapter 5 gave an analysis of how the 

receding horizon controller was sensitive to disturbances of multiple scales in the 

environment.  A “best” receding horizon strategy was proposed, which adapted 

successfully to a problem with multiple scales in the environment.  Chapter 6 showed 

the practical applications of this algorithm.  The algorithm was shown to be a viable 

technique to mitigate persistent contrail formation. The results were compared to 

existing contrail mitigation strategies.  Additionally, the dissertation investigated 

simulation results for multi-scale scenarios involving both contrail mitigation and 

thunderstorm avoidance.  Lastly, Chapter 6 presented other practical applications for 

this work including turbulence avoidance, sonic boom mitigation, and aircraft icing 

avoidance. 

 

7.2 Conclusions 

This dissertation presented a framework of a receding horizon path planner for a real 

time air traffic management application that included an accurate model of aircraft fuel 

burn, a new receding horizon cost-to-go algorithm, and a model of the atmosphere that 

included both hard and soft constraints.  The performance of the algorithm was tested 

through simulation, and the practicality of the path planner was investigated though 

example scenarios using real data.  The specific conclusions in the dissertation are 

listed below: 
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• This research showed that a more realistic cost function can operate within 

the bounds of tractability, as long as it is piecewise linear and the number 

of binary variables in the optimization are bounded.  Prior to this 

dissertation, MILP (mixed-integer linear programming) had mostly been 

used in relatively simple problems involving the creation of feasible, and 

time optimal trajectories through a field of obstacles.  Recent research in 

MILP path planning techniques has tended more toward robustness of the 

algorithm than an assessment of the algorithm’s value in a real-life 

scenario.  Chapter 3 provided a more realistic cost function involving fuel 

burn as a function of velocity, altitude, acceleration, and climb rate.   

 

• A novel cost-to-go formulation designed for the inclusion of soft avoidance 

constraints in the receding horizon MILP was developed with this research.  

Existing research has used receding horizon MILP as a path planning 

technique for environments containing hard avoidance constraints.  The 

cost-to-go in these formulations restricted the path of least cost in the cost-

to-go to pass through the vertices of the obstacles in the environment.  

This is not an efficient strategy for soft avoidance constraints, where a flight 

path can pass through the obstacle and incur a penalty.  The performance 

of this algorithm was tested and it was shown to be very close to the 

performance and shape of trajectories generated with a non-receding 

horizon MILP formulation. 
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• The performance of receding horizon MILP was shown to be very sensitive 

to both the planning horizon and execution horizon lengths in the receding 

horizon controller.  In Chapter 5 the sensitivity of the receding horizon 

trajectories was investigated in environments containing both hard and soft 

avoidance constraints that were both static and dynamic.  The results of 

this sensitivity were used to develop a receding horizon strategy with 

variable planning and execution horizons that adapt to the scale of the 

obstacles in the environment.  The performance of the adaptive strategy 

was tested through simulation and was shown to perform better than a 

fixed horizon formulation. 

 

• The path planning algorithm was tested in several real-world examples to 

show its effect on the environmental impact of aviation.  In Chapter 6, the 

algorithm was applied to the problem of persistent contrail mitigation, and it 

showed that it can mitigate, on average over a year, 58% of persistent 

contrails with an increase in fuel consumption of 0.48%.  The algorithm 

was shown to be successful in examples of convective weather avoidance, 

and in a combined example of persistent contrail mitigation and convective 

weather avoidance.  
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7.3 Recommendations 

In addition to the contributions listed above, recommendations for future research 

directions are listed below: 

 

• Include a more realistic model for the constraints in the National 

Airspace System (NAS). 

The research conducted for this dissertation assumed a free-flight type of 

system for Air Traffic Control (ATC).  Operationally, there are many 

prescribed routes and waypoints that aircraft follow en-route, and there can 

be unexpected instructions from ATC such as holding and other flow 

controls.  It would be interesting to see how the path planning algorithm in 

this dissertation would react to such constraints, and how sector capacity 

would be affected by persistent contrail mitigation and convective weather 

avoidance. 

 

• Investigate the effect of parallel computation on the computational 

performance of the algorithm. 

As was explained in the dissertation, mixed-integer linear programming is 

NP-Hard in the number of binary variables.  It was shown in the 

dissertation that receding horizon trajectory accuracy increased with the 

number of waypoints in the planning horizon; however, larger planning 

horizons tend to become intractable.  Parallel computation should be 
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explored as a possible technique to share the computational burden and 

allow larger problem formulations to be tractable in real-time.   

 

• Expand the flight envelope of the aircraft model to include arrival and 

departure performance and fuel consumption. 

Arrival and departure routes are greatly affected by convective weather.  

Furthermore, one of the additional applications listed in Chapter 6 is aircraft 

icing, which usually occurs during the arrival/approach segment of a flight.  

Expanding the flight envelope of the aircraft model would enable these 

scenarios to be more thoroughly investigated.   

 

• Explore different atmospheric data sources for relative humidity with 

respect to ice (RHi). 

The RHi data used in this dissertation were obtained from the Rapid 

Update Cycle (RUC) model.  Although these data are not accurate, they 

are representative of the size and shape of observed areas of ice super 

saturation, and were therefore used in this dissertation for the purpose of 

tool development.  In lieu of gridded RHi data, a RHi field could be created 

using in situ measurements from aircraft en-route.  This data field would be 

less regular than a 3-D grid, therefore presenting an interesting controls 

problem with limited data.  



 162

Bibliography 
 

[1] FAA Air Traffic Organization, “The Economic Impact of Civil Aviation on the U.S. 

Economy,” 2009. 

 

[2] Ratliff et al., “Aircraft Impacts on Local and Regional Air Quality in the United States,” 

PARTNER Project 15 Final Report, Oct. 2009. 

 

[3] Maurice L. Q., Lee D. S. (eds) 2009. Assessing Current Scientific Knowledge, 

Uncertainties and Gaps in Quantifying Climate Change, Noise and Air Quality Aviation 

Impacts. Maurice, L. Q,, Lee, D. S., Wuebbles, D. W., Isaksen, I., Finegold, L., Vallet, 

M., Pilling, M. and Spengler, J. Final Report of the International Civil Aviation 

Organization (ICAO) Committee on Aviation and Environmental Protection (CAEP) 

Workshop, US Federal Aviation Administration and Manchester Metropolitan University, 

Washington DC and Manchester. 

 

[4] Next Generation Air Transportation System, Federal Aviation Administration Report 

to the U.S. Congress, 2004. 

 

[5] Intergovernmental Panel on Climate Change, Aviation and the Global Atmosphere.  

J. E. Penner, D. H. Lister, D. J. Griggs, D. J. Dokken, and M. McFarland (eds.), 

Cambridge University Press. Cambridge, UK, 1999. 

 

[6] Wuebbles, D, et. al. Workshop on the Impacts of Aviation on Climate Change: A 

Report of Findings and Recommendations.  Cambridge, MA, June 7-9, 2006. 

 

[7] Travis, D. J., Carleton, A. M., and Lauritsen, R. G., “Contrails reduce daily 

temperature range,” Nature. Vol 418. 8 August 2002. p. 601. 

 



 163

[8] Waitz, I., Townsend, J., Cutcher-Gershenfeld, J., Greitzer, E., and Kerrebrock, J. 

Report to the United States Congress: Aviation and the Environment, A National Vision, 

Framework for Goals and Recommended Actions.  Partnership for AiR Transportation 

Noise and Emissions Reduction, MIT, Cambridge, MA, 2004. 

 

[9] United States Environmental Protection Agency. “Aircraft contrails Factsheet,” 

EPA430-F-00-005, September 2000. 

 

[10] Brewer, A. W., “Condensation Trails,” Weather 1. 34-40, 1946. 

 

[11] Platt, C. M. R., “The effect of cirrus of varying optical depth on the extraterrestrial 

net radiative flux,” Q. J. R. Meteorol. Soc. 107, 671-678, 1981. 

 

[12] Burkhardt, U., Karcher, B., Mannstein, H., and Schumann, U., “Climate impact of 

contrails and contrail cirrus,” Aviation Climate Change Research Initiative (ACCRI), Jan. 

25, 2008. 

 

[13] Cooperative Program for Operational Meteorology, Education and Training 

(COMET®): http://meted.ucar.edu/nas/index.htm. 

 

[14] Krozel, J., Andre, A., and Smith, S., “The future national airspace system: Design 

requirements imposed by weather constraints,” in Proc. of the AIAA Guidance, 

Navigation, and Control Conf., 2003, no. 5769, 2003. 

 

[15] Clarke et al., “Development, Design, and Flight Test Evaluation of a Continuous 

Descent Approach Procedure for Nighttime Operation at Louisville International Airport,” 

PARTNER report No. PARTNER-COE-2006-002, Jan. 2006. 

 

[16] Clarke et al., “En Route Traffic Optimization to Reduce Environmental Impact,” 

PARTNER report No. PARTNER-COE-2008-005, Jul. 2008. 

 



 164

[17] Schumann, U., “Formation, properties, and climatic effects of contrails,” Comptes 

Rendus Physique, 6 (2005), 549-565. 

 

[18] Noppel F, Singh R, Taylor M., “Novel engine concept to suppress contrail and cirrus 

cloud formation,” International Conference on Transport, Atmosphere and Climate, 

Oxford, UK, June 2006. 

 

[19] Montgomery CJ, Sarofim AF, Preciado I, Marsh ND, Eddings EG, Bozzelli JW. 

Experimental and numerical investigation of sootreducing fuel additives. AIAA paper 

2005-4472. 41st AIAA/ ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 

Tucson, Arizona, July 10-13, 2005. 

 

[20] Gierens K, Kärcher B, Mannstein H, Mayer B. Aerodynamically induced formation 

of contrails. International Conference on Transport, Atmosphere and Climate, Oxford, 

UK, June 2006. 

 

[21] Klima, K., “Assessment of a Global Contrail Modeling Method and Operational 

Strategies for Contrail Mitigation,” M.S. Thesis, MIT, 2005. 

 

[22] Mannstein, H., Spichtinger, P., and Gierens, K., “A Note on How to Avoid Contrail 

Cirrus,” Transportation Research Part D, Vol. 10, No. 5, 2005, pp. 421-426. 

 

[23] Williams, V., and Noland, R. B., “Variability of Contrail Formation Conditions and 

the Implications for Policies to Reduce the Climate Impacts of Aviation,” Transportation 

Research Part D, Vol. 10, No. 4, 2005, pp. 169-280. 

 

[24] Fichter, C., Marquart, S., Sausen, R., and Lee, D. S., “The Impact of Cruise Altitude 

on Contrails and Related Radiative Forcing,” Meteorologische Zeitschrift, Vol. 14, No. 4, 

Aug. 2005, pp. 563-572. 

 



 165

[25] Campbell, S., Neogi, N., and Bragg, M., “An Optimal Strategy for Persistent Contrail 

Avoidance,” AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, 

Hawaii, Aug. 18-21, 2008. 

 

[26] Campbell, S., Neogi, N., and Bragg, M., “An Operational Strategy for Persistent 

Contrail Mitigation,” AIAA Aviation Technology, Integration, and Operations Conference, 

Hilton Head, South Carolina, Sept. 18-21, 2009. 

 

[27] Kuhn, K., “Analysis of Thunderstorm Effects on Aggregated Aircraft Trajectories,” 

Journal of Aerospace Computing, Information, and Communication.  Vol. 5, April 2008. 

 

[28] DeLaura, R., and Evans, J., “An Exploratory Study of Modeling Enroute Pilot 

Convective Storm Flight Deviation Behavior,” 12th Conference on Aviation, Range and 

Aerospace Meteorology, Atlanta, GA, 2006, pp. 1–15, paper p12.6. 

 

[29] Krozel, J., Lee, C., and Mitchell, J., “Turn-Constrained Route Planning for Avoiding 

hazardous Weather,” Air traffic Control Quarterly, Vol. 14(2), 159-182, 2006. 

 

[30] Pannequin, J., Bayen, A. M., Mitchell, I. M., Chung, H., and Sastry, S., “Multiple 

aircraft deconflicted path planning with weather avoidance constraints,” in The 2007 

AIAA Guidance, Navigation and Control Conference, 2007. 

 

[31] Nguyen, M., Alam, S., tang, J., and Abbass, H., “Dynamic weather avoidance 

trajectories in a traffic constrained enroute airspace,” ALAR Technical Report Series, 

TR-ALAR-200712005, 2007. 

 

[32] Frazzoli, E., “Robust Hybrid Control for Autonomous Vehicle Motion Planning,” PhD 

Dissertation, MIT, 2001. 

 

[33] Milan, M., “Real-Time Optimal Trajectory Generation for Constrained Dynamical 

Systems,” PhD Dissertation, Cal Tech, 2003. 



 166

 

[34] Schouwenaars, T., “Safe Trajectory Planning for Autonomous Vehicles,” PhD 

Dissertation, MIT, 2005. 

 

[35] Bryson, A. E., and Ho, Y. C., Applied Optimal Control. John Wiley & Sons Inc, 

1979. 

 

[36] Hwang, Y. K., and Ahuja, N., “A Potential Field Approach to Path Planning,” IEEE 

Trans. on Robotics and Automation, Vol. 8, No. 1, Feb. 1992. 

 

[37] Ross, I., and Fahroo, F., “Pseudospectral Knotting Methods for Solving Nonsmooth 

Optimal Control Problems,” AIAA Journal of Guidance, Control, and Dynamics, 

27(3):397–405, May-June 2004. 

 

[38] Franz, R., Milam, M., , and Hauser, J., “Applied Receding Horizon Control of the 

Caltech Ducted Fan.” In Proceedings of the IEEE American Control Conference, 2002. 

 

[39] Milam, M., Mushambi, K., and Murray, R., “A New Computational Approach to 

Real-Time Trajectory Generation for Constrained Mechanical Systems.” In Proceedings 

of the IEEE Conference on Decision and Control, pages 845–851, Washington DC, 

2000. 

 

[40] Bellingham, J., Richards, A., and How, J. P., "Receding Horizon Control of 

Autonomous Aerial Vehicles," Proceedings of the IEEE American Control Conference, 

May 2002, pp. 3741-3746. 

 

[41] Kuwata, Y., and How, J. P., "Three Dimensional Receding Horizon Control for 

UAVs,” Proceedings of the AIAA Guidance, Navigation, and Control Conference, Aug 

2004. AIAA-2004-5144. 

 



 167

[42] Culligan, K., “Nap of the Earth Trajectory Design using MILP,” M.S. Thesis, MIT, 

2006. 

 

[43] Schouwenaars, T., Feron, E., de Moor, B., and How, J. P., "Mixed Integer 

Programming for Multi-vehicle Path Planning, " Proceedings of the European Control 

Conference, European Union Control Association, Porto, Portugal, September, 2001, 

pp. 2603-2608. 

 

[44] Ma, C. S., and Miller, R. H., “Mixed Integer Linear Programming Trajectory 

Generation for Autonomous Nap-of-the-Earth Flight in a Threat Environment,” IEEE 

Aerospace Conference, 2005. 

 

[45] Chaudhry, A., Misovec, K., and D’Andrea, R., “Low Observability Path Planning for 

an Unmanned Air Vehicle Using Mixed Integer Linear Programming,” 43rd IEEE 

Conference on Decision and Control, Paradise Island, Bahamas, Dec. 14-17, 2004. 

 

[46] Garey, M. R. and Johnson, D. S., Computers And Intractability: A guide to the 

Theory of NP-Completeness, W. H. Freeman and Co., New York, NY, USA, 1979. 

 

[47] Papadimitriou, C. H. and Steiglitz, K., Combinatorial Optimization: Algorithms and 

Complexity, Dover Publications, Inc., Mineola, NY, USA, 1998. 

 

[48] Earl, Matthew. G. D'Andrea, R., “Iterative MILP methods for vehicle-control 

problems," IEEE Transactions on Robotics and Automation, Vol. 21, No. 6, 2005, pp. 

1158-1167. 

 

[49] Vitus, M. P., Pradeep, V., Hoffmann, G. M., Waslander, S. L., and Tomlin, C. J., 

“Tunnel-MILP: Path Planning with Sequential convex Polytopes,” AIAA Guidance, 

Navigation, and Control Conference, Honolulu, HI, 2008. 

 



 168

[50] Schouwenaars, T., Valenti, M., Feron, E., and How, J., “Implementation and Flight 

test Results of MILP-based UAV Guidance,” IEEE Aerospace Conference, Big Sky, MT, 

Mar. 5-12 2005. 

 

[51] Appleman, “The Formation of Exhaust Condensation Trails by Jet Aircraft”. Bulletin 

American Meteorological Society, Vol.34, No. 1, January, 1953. pp.14-20. 

 

[52] Schumann, U., “Influence of Propulsion Efficiency on Contrail Formation”. Aersp. 

Sci. Technol. Vol. 4. 2000. p.391-401. 

 

[53] Gierens, K., Spichtinger, P., “On the size distribution of ice supersaturated regions 

in the upper troposphere and lowermost stratosphere,” Ann. Geophys., 18 (2000) 1687-

1690. 

 

[54] Spichtinger, P., Gierens, K., Leiterer, U., and Dier, H., “Ice supersaturation in the 

tropopause region over Lindenberg, Germany,” Meteor. Z., 12 (2003) 143-156. 

 

[55] Stuber, N., Forster, P., Rädel, G., and Shine, K., “The importance of the diurnal and 

annual cycle of air traffic for contrail radiative forcing,” Nature. Vol. 441, 15 Jun. 2006, 

pp. 864-867. 

 

[56] Sausen et al., “2005: Aviation radiative forcing in 2000: An update on IPCC (1999),” 

Meteor. Z., 4 (2005) 555-561. 

 

[57] Spictinger, P., Gierens, K., and Read, W., “The global distribution of ice-

supersaturated regions as seen by the microwave limb sounder,” Q. J. R. Meteorol. 

Soc. 129, 3391-3410, 2003. 

 

[58] Gettleman, A., Fetzer, E. J., Eldering, A., and Irion, F. W., “The global distribution of 

saturation in the upper troposphere from the Atmospheric Infrared Sounder,” J. Clim. 

19, 6089-6103, 2006. 



 169

 

[59] Gierens, K., Schumann, U., Helten, M., Smit, H., and Marenco, A., “A distribution 

law for relative humidity in the upper troposphere and lower stratosphere derived from 

three years of MOZAIC measurements,” Ann. Geophys. 17, 1218-1226, 1999. 

 

[60] Gibson, J. K., Kallberg, P., Uppala, S., Hernandez, A., Nomura, A., and Serrano, 

E., “ERA Description,” ECMWF Re-Analysis Project Report Series, 1, 1-72, 1997. 

 

[61] Benjamin, S. G., D. Devenyi, S. S. Weygandt, K. J. Brundage, J. M. Brown, G. A. 

Grell, D. Kim, B. E. Schwartz, T. G. Smirnova, T. L. Smith, and G. S. Manikin, “2004: An 

hourly assimilation/forecast cycle: The RUC,” Mon. Wea. Rev., 132, 495-518 (Feb. 

issue). 

 

[62] Weber, M., Evans, J., Wolfson, M., DeLaura, R., Moser, B., Martin, B., Welch, J., 

Andrews, J., and Bertsimas, D., “Improving air traffic management during 

thunderstorms,” IEEE Digital Avionics Systems Conference, 2005. 

 

[63] Fahey, T., and Rodenhuis, D., “Continual evolution of CCFP-User needs for 

extended range prediction,” 11th Conference on Aviation, Range, and Aerospace 

Meteorology, Hyannis, MA, 2004. 

 

[64] Robinson, M., Evans, J., and Crowe, B., “En route weather depiction benefits of the 

NEXRAD vertically integrated liquid water product utilized by the corridor integrated 

weather system,” Aviation, Range and Aerospace Meteorology, ARAM, Portland, OR, 

2002, pp. 120–123. 

 

[65] Yoder, T., “Development of Aircraft Fuel Burn Modeling Techniques with 

Applications to Global Emissions Modeling and Assessment of the Benefits of Reduced 

Vertical Separation Minimums,” M.S. Thesis, MIT, 2007. 

 



 170

[66] Jardin, M. R., “Ideal Free Flight through Multiple Aircraft Neighboring Optimal 

Control,” Proceedings of the American Control Conference, Chicago, IL, June, 2000, pp. 

2879-2885. 

 

[67] Roskam, J., Airplane Design, Part IV: Preliminary Calculation of Aerodynamic, 

Thrust and Power Characteristics, DARcorporation, Lawrence, KS, 2000. 

 

[68] Anderson, J. D., Aircraft Performance and Design, McGraw-Hill, 1999. 

 

[69] PERF: Engine Performance Analysis Program v4.2 

 

[70] Lambert, M., Munson, K., Taylor, M, J, H., and Taylor, J. W. R., (eds.) JANES’S 

ALL THE WORLD AIRCRAFT, Jane’s Information Group, Alexandria, VA, 1990. 

 

[71] Padilla, C. E., Optimizing Jet Transport Efficiency, McGraw-Hill, 1996. 

 

[72] Maciejowski, J., Predictive Control with Constraints. Prentice Hall, 2002. 

 

[73] Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. “Constrained Model Predictive 

Control: Stability and Optimality.” Automatica, 36:789–814, 2000. 

 

[74] Murray, R., and Dunbar, W., “Controller Synthesis for Constrained Flight Systems 

via Receding Horizon Optimization,” 2nd AIAA “Unmanned Unlimited” Systems, 

Technologies, and Operations-Aerospace, Land, and Sea Conference, San Diego, CA, 

Sept.15-18, 2003. 

 

[75] Richards, A., “Trajectory Optimization Using Mixed-Integer Linear Programming,” 

M.S. Thesis, MIT, 2002. 

 

[76] Cormen, T., Leiserson, C., and Rivest, R., Introduction to Algorithms. McGraw-Hill, 

1990. 



 171

 

[77] ILOG, ILOG CPLEX User’s guide, 2007. 

 

[78] Garcia, C., Prett, D., and Morari, M., “Model predictive control: Theory and practice 

– a survey,” Automatica, 25(3):335–348, 1989. 

 

[79] Stephanopoulos, G., Karsligil, O., and Dyer, M., “Multi-Scale Aspects in Model-

Predictive Control,” Journal of Process Control, Vol. 10, Apr. 2000, pp. 275-282. 

 

[80] Stuber, N., and Forster, P., “The Impact of Diurnal Variations of Air Traffic on 

Contrail Radiative Forcing,” Atmos. Chem. Phys., vol. 7, 2007, pp. 3153-3162. 

 

[81] Rachami, J., Page, J., Zhao, L., and Kim, B., “Environmental Modeling  of 

Advanced Vehicles in NextGen,” AIAA Aviation Technology, Integration, and Operations 

Conference, Hilton Head, South Carolina, Sept. 18-21, 2009. 

 

[82] Rachami, J., and Page, J., “Sonic Boom Modeling of Advances Supersonic 

Business Jets in NextGen,” AIAA Aerospace Sciences Meeting, Orlando, Florida, Jan. 

4-7, 2010. 

 

[83] Williams, J., Sharman, R., and Kessinger, C., “Developing a Global Atmospheric 

Turbulence Decision Support System for Aviation,” Seventh Conference on Artificial 

Intelligence and its Applications to the Environmental Sciences, Phoenix, AZ, 2009. 

 

[84] NCAR, “New NCAR System May Guide Tranoceanic Flights Around Storms and 

Turbulence,” http://www.ucar.edu/news/releases/2009/ocean-air-turbulence.jsp#. 

(accessed 03/12/2010).  

 

[85] NTSB Accident Database & Synopses, http://ntsb.gov/ntsb/query.asp, (accessed 

03/15/2010). 

 



 172

[86] Bernstein et al., “Current Icing Potential: Algorithm Description and Comparison 

with Aircraft Observations,” Journal of Applied Meteorology, Vol. 44. Jul. 2005. pp. 969-

986. 



 173

Author’s Biography 
 
Scot received his B.S. in Aeronautical and Astronautical Engineering from the University 

of Illinois in 2003.  After his undergraduate studies, Scot worked as an aerodynamics 

engineer for The Boeing Company on the X-45 Joint Unmanned Combat Air System 

project.  In 2005, he returned to the University of Illinois to pursue his M.S. in Aerospace 

Engineering under the mentoring of Professor Michael Bragg, which he obtained in 

2006.  Since 2006, Scot has been working on his Ph.D. in Aerospace Engineering, 

where his research concerns the development of an aircraft path planner to reduce the 

environmental impact of aviation.  In addition to his graduate studies, Scot has been a 

part-time flight instructor at the University of Illinois Institute of Aviation since 2005.  He 

holds a commercial pilot’s license for single and multi-engine airplanes as well as a 

flight instructor certificate.  Recently, he was awarded the 2010 Roger A. Strehlow 

Memorial Award for outstanding research accomplishments.  This summer Scot will 

start a new career with MIT Lincoln Laboratory, where he will research decision support 

tools for air traffic control. 




