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An Operational Strategy for Persistent Contrail Mitigation

Scot E. Campbell1, Natasha A. Neogi2, and Michael B. Bragg3

University of Illinois Urbana-Champaign, Urbana, IL, 61801

The formation of persistent contrails has been recognized as a potential threat to the
global climate. This paper presents a methodology to optimally reroute aircraft trajectories
to mitigate the formation of persistent contrails with the use of mixed integer linear
programming (MILP). The path planning algorithm was developed so that flights through
areas conducive to persistent contrail formation are assessed a penalty which can be
adjusted by the user before the flight. The tradeoff between persistent contrail formation
and increased fuel burn was analyzed for flights of different contrail formation penalty
weighting. It was found that fuel burn increased 1.48% when approximately 50% of
persistent contrails were avoided and 6.19% when 100% of persistent contrails were
avoided.

I. Introduction
ir transportation is critical to the world’s infrastructure, economy, and quality of life. Increasing demand for air
travel has pushed the utilization of the air traffic system to its limits, manifesting itself in a loss of efficiency,

degradation of flight safety, and increased environmental impact. Aviation affects the environment in many ways
including land use, noise pollution, local air quality, and climate.1 Although its effect on climate is currently not
fully understood,1 there are well founded concerns that aircraft emissions might play a larger role in future global
climate change.2,3 The three largest aviation emissions effectors on the climate are direct emission of greenhouse
gases such as CO2, emissions of NOx, and persistent contrails.2,3 In general, persistent contrails are formed when an
aircraft passes through an ice-supersaturated region in the atmosphere. Although the complete effect of persistent
contrails on the environment is not known, there is evidence to suggest an effect,4 and it is predicted that persistent
contrails have a three to four times greater effect on the climate than CO2 emissions.1 With a projected three fold
increase in air traffic by the year 2025,5 the effect of aviation on the environment will increase with time. Recent
research has investigated operational strategies to mitigate persistent contrail formation through air traffic
management scenarios. These strategies include the restriction of cruise altitudes,6-8 the real-time adjustment of
cruise altitude,9 and rerouting the flight plans of aircraft to avoid areas conducive to persistent contrail formation.10

In addition, an optimal strategy for contrail avoidance was proposed, but this strategy precluded any flight through a
region conducive to contrail formation, which is not ideal from an operational standpoint.11 This research builds
upon the optimal contrail avoidance strategy to include the capability to penetrate areas conducive to persistent
contrail formation, where flight would be penalized instead of precluded.

Optimal trajectory planning has been investigated through many different techniques.12-16 Mixed-integer
programming (MILP) has been successfully applied to trajectory optimization problems involving constrained
dynamics and obstacle avoidance using both full horizon, and receding horizon implementations.15-22 One drawback
to full horizon MILP is the optimization can be intractable for large problems, i.e. many obstacles, discrete time
steps, dynamic constraints. To make large problems tractable, a receding horizon controller can be used to speed up
the solution time.17,18 A receding horizon controller essentially finds the optimal trajectory up to a certain point,
called the planning horizon, and then approximates the remaining trajectory to the goal.17 The controller executes a
pre-specified number of time steps in the optimal trajectory and the optimization is iterated until the goal is
reachable in the planning horizon.17 This paper will use MILP to find the fuel optimal trajectory of an aircraft flying
from O’Hare International Airport (KORD) to Los Angeles International Airport (KLAX) while mitigating
persistent contrail formation.
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II. Contrail Formation and the Atmospheric Model
Contrails are line-shaped clouds that form behind aircraft at high-altitudes.23 After forming, contrails dissipate if

the relative humidity with respect to ice (RHi) is low, and persist if the RHi is high. The RHi threshold at which
contrails persist is thought to vary between 95-105%,24 but for simplicity, this paper used RHi > 100% to define the
necessary condition for persistent contrail formation.

Regions of ice supersaturation (RHi > 100%) typically develop in areas of rising air motion and are defined by
boundaries on the order of 150 km horizontally26 and approximately 500 m vertically.27 Currently, there is not an
accurate forecast model to predict areas of ice supersaturation, and it is difficult to measure relative humidity at
altitudes near cruise,25 however, fields of RHi can be estimated with the following tools.

Tools such as the Microwave Limb Sounder (MLS) and the Atmospheric Infrared Sounder (AIRS) have been
used to detect areas of supersaturation.28,29 Unfortunately, the data available from these tools has poor vertical
resolution of the ice supersaturation in the region. The MOZAIC program collected 9 years of data along major
flight routes, however these data do not include off-route measurements.30 In addition, satellites have been used to
detect contrail formation but not explicitly areas of supersaturation. Forecast models for relative humidity include
The European Center for Medium-Range Weather Forecasts (ECMWF)31 and the Rapid Update Cycle (RUC). The
RUC is an atmospheric prediction system that is principally a numerical forecast model developed for users needing
short-range weather forecasts.32 This paper used RUC data with a horizontal resolution of 20km. The vertical
resolution of these data are isobaric pressure levels ranging from 100-1000mb in 25mb increments.

This paper used archived RUC data from November 17, 2001. Figure 1 shows the November 17, 2001 field of
RHi at different times. The red areas indicate RHi greater than 100% in the region. During the time period of
1700Z-2000Z the RHi field did not change significantly, which is typical.
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Fig. 1 Fields of RHi at Different Times on November 17, 2001, RUC data.
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Also, it should be noted that the size of the RHi fields change with altitude. For MILP implementation, the areas of
RHi > 100% were represented as overlapping cuboids.

It should be understood that while the RHi estimates from the RUC data are representative of areas of
supersaturation, the values of RHi in the estimates are biased. This is a result of dry bias in some radiosonde
measurements that are used in the model. Therefore, the assumption is that even though the RHi fields might not be
accurate, they are representative enough that a path planning tool can be developed and successfully applied to more
accurate data when it comes available.

III. Aircraft Fuel Burn Model
Aircraft fuel burn is a complicated quantity that is dependent on many states and aircraft-specific parameters. In

practice, fuel burn is predicted based on flight test data taken over a wide range of operating conditions. In lieu of
these data, fuel burn can be approximated with a limited set of aircraft and engine data. Previous studies have
predicted fuel burn using the FAA’s System for Assessing Global Emissions (SAGE),10 a modified version of
SAGE,33 and a quadratic approximation based on velocity.34 Existing work using the MILP framework have
approximated fuel burn by the 1-norm of the aircraft acceleration.20,21 This paper uses aircraft data and engine
performance simulation software to approximate fuel burn over the cruise flight envelope. This method is better
model than a 1-norm approximation or velocity approximation, but simple enough to implement in the mixed-
integer programming framework.

A. Aircraft Performance
The aircraft performance model used for this paper was created to emulate the en-route performance

characteristics of medium-range aircraft such as the Boeing 737 and Airbus A320. The following restrictions were
placed on the altitude and Mach number to confine aircraft performance to the cruise envelope, as seen in Eq. (1)

ftzft

M

000,42000,28

82.070.0

≤≤
≤≤

(1)

where M is the Mach number and z is the altitude. To compute the performance, the drag coefficient was extracted
from drag polar data35 for a range of Mach numbers, altitudes, and weights. The thrust required was calculated for
the range of Mach numbers and altitudes given by Eq. (1) and for three weights, each representing the aircraft
weight at a different fuel state along the flight path.

B. Engine Performance
Engine performance was obtained with the Engine Performance Analysis Program v4.2.36 This program used a

set of engine parameter inputs and flight conditions (Mach number, altitude) to compute curves of thrust specific
fuel consumption (TSFC) vs. engine thrust. The engine was assumed to be a high-bypass turbofan, and the software
input parameters are given in Table 1.

Table 1 Engine Performance Software Input Parameters
Mass Flow Rate

(max throttle, sea level)
779 lbm/sec

Bypass Ratio 5.1
Compressor Pressure Ratio 32.8

Fan Pressure Ratio 2.3

The program was run for the range of Mach numbers and altitudes given by Eq. (1). The engine performance data
were tabulated for use in the aircraft fuel burn model.

C. Aircraft Fuel Burn
Aircraft fuel burn was calculated for a range of Mach numbers, altitudes, and weights using Eq. (2)
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TSFCTW reqf ⋅= (2) 

where Wf is the fuel flow, Treq was found by the aircraft performance calculations, and TSFC was found by the
engine performance model. Figures 2 and 3 show the relationship of altitude and velocity with fuel flow,
respectively, for an aircraft weight of 145,000 lb with engine and drag characteristics described above.
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Fig 2. Altitude vs. Fuel Flow for W = 145,000 lb Fig 3. Velocity vs. Fuel Flow for W = 145,000 lb

Figures 3 and 4 show the highly nonlinear nature of fuel burn. To simplify this behavior, a nominal flight
condition was selected (Mach number, altitude) for a given weight, and the change in fuel burn around the nominal
flight condition was modeled. The nominal cruise Mach number was selected to be 0.78 based on typical cruise
speeds for the type of aircraft considered in this model.38 The nominal cruise altitude was selected based on the
optimal altitude for a Mach number of 0.78 and for a given weight. Ideally, the nominal altitude would increase
continuously as the weight of fuel is burned off of the aircraft, resulting in a cruise climb flight profile. However,
this procedure is generally not performed in practice because of air traffic control restrictions. Instead, a step-climb
procedure is used, where the altitude is increased in discrete steps along the flight path.39 This model emulated a step
climb by using three nominal cruise altitudes based on the optimal altitude for three aircraft weights. The initial
weight was assumed to be 145,000 lbs, and the subsequent weights were 135,000 lbs and 125,000 lbs, which
corresponded to optimal altitudes of approximately 34,000 ft, 36,000 ft, and 38,000 ft, respectively, for a Mach
number of 0.78. Table 3 gives the nominal flight conditions used for this model.

Table 2 Nominal Flight Conditions
Weight (lb) Altitude (ft) Mach number True airspeed (knots)

145,000 34,000 0.78 451
135,000 36,000 0.78 447
125,000 38,000 0.78 447

Figures 4 and 5 show the sensitivity of fuel flow to changes in altitude and velocity around the nominal flight
conditions, respectively.
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Fig. 4 Sensitivity of fuel flow to altitude Fig. 5 Sensitivity of fuel flow to velocity

IV. Path Planning Algorithm
This section describes the formulation of the persistent contrail mitigation problem as a receding horizon mixed-

integer linear program (RH-MILP). The receding horizon controller can be thought of in two parts: a detailed
trajectory optimization with a pre-specified time horizon, followed by a less refined approximation of the cost from
the end of the detailed trajectory to the goal. Once the detailed trajectory and approximate cost-to-go is optimized, a
pre-specified number of time steps in the detailed trajectory are executed, and the optimization is recomputed with
the updated initial condition. This procedure continues until the goal is reachable in the time horizon of the detailed
trajectory, also called the planning horizon. Existing research using RH-MILP for path planning has represented
obstacles with hard avoidance constraints, which do not allow a path through the obstacle.11,16,17 This paper presents
a new RH-MILP formulation that employs soft constraint to allow flight through an obstacle with a penalty in the
cost function. The optimizations were solved using CPLEX40 10.2 on a laptop with a 2.16 GHz Intel Core2 Duo
processor and 2 GB of RAM.

A. Aircraft Dynamical and Performance Constraints
The detailed trajectory optimization phase of the receding horizon controller uses MILP to find the fuel optimal

trajectory from an initial state to the end of the planning horizon. This aircraft model is based upon existing
research.11

The dynamical constraints presented here are that of a double integrator and the evolution of the aircraft states is
governed by Eq. (3) 
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The vector x represents the position and velocity of the aircraft, the vector u represents the acceleration, k is the
discrete time step, and ∆t is the size of the time step.

The calculation of velocity magnitude from the individual velocity components requires the square root of the
sum of the squares, which is obviously a nonlinear operation and inadmissible in MILP. Therefore an accurate
method is needed to approximate the magnitude of velocity because fuel burn is largely dependent on the speed of
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the aircraft. The following procedure provides a linear approximation of the velocity and the acceleration for
implementation into the MILP16
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where V and A are the velocity and acceleration magnitudes respectively, bv is a binary variable, R is a large
constant, and m is an integer in the set of integers from 1 to M. Equation 6 is necessary to include non-convex
constraints on minimum velocity. It should be noted here that the velocity and acceleration magnitude
approximations only account for motion in the x-y direction. Motion in the z-direction was treated separately.
Additionally, V and A were bounded to constrain the optimization within a realistic flight envelope, as given in Eqs.
(8) and (9):

maxmin VVV ≤≤ (8) 

 maxAA ≤ (9) 

The vertical velocity was constrained by a rate of climb limit, which was a function of the altitude. The
maximum rate of climb was defined by Eq. (10)

01max ββ =+ zRC (10)

where RCmax is the maximum rate of climb, and βi was computed in the aircraft model. The rate of climb was
constrained by the maximum rate of climb using Eq. (11) 

 0max ≤− RCvz (11) 

The maximum descent rate was represented by a lower bound on the vertical velocity and was chosen to be a value
consistent with normal operation of commercial aircraft.36

Terminal constraints were used to encourage the aircraft to reach the goal if the goal was reachable in the
planning horizon. These constraints use binary variables and are shown in Eqs. (12) and (13) 
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where bf[k] is the binary variable corresponding to time step k, (xf, yf, zf) is the final position, and R is a large
constant used to relax the constraint. In the literature, this approach is referred to as the “big-M” approach.

B. Contrail Mitigation Constraints
Contrail mitigation is accomplished within the MILP framework by defining areas conducive to contrail

formation as cuboids, and then penalizing flight through these regions, which is solvable by mixed-integer linear
programming. Equations 14 and 15 show the constraints used to penalize persistent contrail formation.
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The variable C defines the 6 planes that compose the cuboid which represents an area of RHi > 100%. The variable
bo,i is a binary variable that is either 1 or 0 depending on whether constraint i is active, and g is a binary variable that
takes the value 1 when all 6 constraints are active. This variable is weighted in the cost function and assigns a
penalty to contrail formation.

C. Detailed Trajectory Cost Function
The fuel burn was modeled in a piecewise-linear fashion as was presented in section III, and the effect of Mach

number, altitude, and throttle setting were assumed to be decoupled around a nominal flight condition and weight.
Also, the effect of weight was accounted for by changing the nominal flight condition at pre-specified intervals of
time, corresponding to the approximate time the aircraft becomes 135,000 lbs and 125,000 lbs during the flight. The
fuel burn curves given in Figs. 4 and 5 were written as a set of piecewise linear functions. The piecewise linear
representation of fuel burn as a function of weight is described by Eqs. (16) and (17):

( ) ( )121 ,...,max +++= iia zzWf µµµµ for i = 1,3,5,… (16) 

 ( ) ( )121 ,...,max +++= iiv VVWf σσσσ for i = 1,3,5,… (17) 

where fa(W) and fv(W) are the fuel burn associated with altitude and velocity, respectively, W is weight, and µi and σi

determine the piecewise linear function. These equations are written in MILP format as follows:
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It should be noted that the coefficients µ and σ depend on the aircraft weight; therefore these equations are updated
whenever the aircraft weight is updated.

The effect of climb and descent on fuel burn was assumed to be decoupled from the effects of velocity, altitude,
and weight. During cruise, commercial aircraft frequently change altitude using the flight level change mode of the
flight management system, and therefore it was assumed that the thrust is set to maximum climb thrust during climb,
and idle during descent. The climb and descent state was characterized with Eq. (20)

descendz

bcz

bRv

bRv

⋅≤−

⋅≤ lim
(20)

where vz is the vertical velocity, R is a large constant, bclimb is a binary variable to indicate climb, and bdescend is a
binary variable to indicate descent.

The last component of the cost is the fuel burn associated with acceleration, which is determined under the
assumption that the fuel burn linearly increases with acceleration. In full, the cost function for the detailed trajectory
optimization is written as Eq. (21) 

 ( ) contrailidescendidescenddescendibciterm
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i
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, (21) 

where fa and fv are the fuel cost associated with altitude and velocity, respectively, A is acceleration, fclimb is a
weighting associated with maximum climb thrust, fdescend is a weighting associated with idle, ∆t is the time step, and
Pcontrail is a weighting applied to the contrail penalty. Again, it should be noted that fa and fv change with aircraft
weight, which is updated periodically during the receding horizon optimization.

D. Algorithm Overview
As stated previously, the optimization approach used in this research can be described by two parts of

different resolution: the near term and the far term. In the near term the trajectory is optimized at a relatively high
resolution of waypoints and subject to more computationally demanding constraints. In the far term the optimal
trajectory is approximated using a coarse resolution of waypoints to reduce the computational burden of the
problem. Generally speaking, the waypoints in the near term are called the planning horizon and the waypoints in
the far term are called the cost to go. After a predetermined number of waypoints are executed in the planning
horizon, the trajectory in the near term is updated based on a new initial position and the optimization iterates until
the aircraft reaches the destination. The steps of the optimization procedure are as follows:

1. Find nominal trajectory disregarding persistent contrail formation
This trajectory is solved using the same MILP framework as before, except the trajectory is in absence of

obstacles and a receding horizon controller is not needed because of the extreme reduction of binary variables due to
the exclusion of obstacles. The nominal trajectory is used in the cost-to-go function to assist the receding horizon
controller in following an optimal trajectory.

2. Create cost grid relative to the aircraft initial position
A cost grid was created to represent the far-field of the receding horizon controller. The grid consisted of a set of

nodes extending radially outward from the aircraft. Figure 6 shows a top-down view of the cost grid. It is important
to keep in mind that the cost grid is 3-dimensional, and Fig. 6 only shows one layer of the grid. The nodes (black
dots in Fig. 6) lie outside of the space reachable by the aircraft in the planning horizon and were defined by the
following equations:
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Fig 6. Cost Grid Representation

where Vmax is maximum velocity, Np is the number of steps in the planning horizon, ∆t is the size of the time step,
and ε is a constant. A cost was assigned to each node and the grid of nodes was used to find the cost-to-go of the
receding horizon controller.

3. Populate cost grid and create visibility graph
Each node in the cost grid was assigned a penalty value based on it’s altitude, distance from the nominal

trajectory found in step 1, and whether or not the node lies in an area of ice supersaturation. The cost-to-go in the
receding horizon controller was found using a modified version of Dijkstra’s algorithm, which takes into account not
only the distance between nodes, but also the penalty value assigned to the node.

4. Find path of least cost using a modified Dijkstra’s algorithm

r0

δ1

δ2

δ3

δ4

θ
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This path connects the first row of nodes in the cost grid (located distance r0 from the aircraft) to the destination.
The cost-to-go trajectory passes though the nodes corresponding to the path of least cost.

5. Find optimal trajectory mitigating persistent contrail formation and update initial position
The detailed trajectory segment of the receding horizon controller was optimized according to dynamical

constraints and performance limits consistent with a medium size jet transport aircraft. The end of the detailed
trajectory was connected to the first row of nodes in the cost grid with the line of sight method used previously.59 As
mentioned before, the trajectory was optimized with RH-MILP.

6. Repeat until the destination is reached
The number of iterations of the optimization is dependent on the distance between the origin and destination, the

time step size, and the number of waypoints in the execution horizon.

V. Results

This example considers a single flight from O’Hare International Airport (ORD) to Los Angeles International
Airport (LAX) using atmospheric data from November 17, 2001. The objective of this example was to find a fuel
optimal trajectory for this route while flying clear of atmospheric areas containing RHi > 100%. The fuel burn cost
was derived from the model presented in Section III, and the formulations of Sections IV describe the dynamical and
aircraft performance constraints. Table 3 lists the receding horizon parameters and the aircraft performance
limitations used in this example.

Table 3 Receding horizon parameters and aircraft performance limits
Number of steps in planning horizon (Np) 12

Number of steps in the execution horizon (Ne) 6
Time step size (∆t) 3 min

Maximum en-route velocity (Vmax) 470 knots
Minimum en-route velocity (Vmin) 417 knots

Maximum altitude (zmax) 42,000 ft
Minimum altitude (zmin) 28,000 ft

Figure 7 shows trajectories overlaid on two-dimensional contour plots of the RHi field at different altitudes. The
blue, black, and red trajectories correspond to optimizations with 100%, 50%, and 0% contrail mitigation,
respectively. The trajectories were initiated at approximately 34,000 ft, it should be noted that the red and black
trajectories are overlaid on each other in Figure 7. The 0% and 50% contrail mitigation trajectories follow an almost
identical straight line trajectory from ORD to LAX with the only difference being in the altitude. The 100% contrail
mitigation trajectory was forced to adjust its horizontal flight path in addition to its altitude to avoid flight into an
area of RHi > 100%.
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Fig. 7 Fuel optimal trajectories overlaid on contour plots of the RHi field at times of (a) 1730Z, (b) 1800Z, (c)
1900Z, and (d) 1940Z. A map showing the boundaries of North America is in the background.

Figure 8 shows the aircraft and contrail mitigation performance associated with the trajectories presented in Fig.
7. Figure 8a shows the velocity profiles of the trajectories, and it is easy to see that the Mach numbers of the 0%
and 50% trajectories (red and black respectively) remain constant at roughly 0.78. On the other hand, due to a
longer flight path the 100% trajectory (shown in blue) increases its Mach number in an attempt to arrive in LAX at
the same time as the 0% trajectory. Figure 8b shows the altitude profiles of the trajectories. The 0% trajectory does
not change its altitude to avoid contrail formation. The altitude increases on the 0% trajectory because the nominal
flight condition changes for the step climb procedure. The 50% and 100% trajectories have the same nominal flight
condition as the 0% but adjust their altitude to fly either above or under areas of RHi > 100%. The persistent
contrail length produced by each trajectory was normalized by the straight line distance between ORD and LAX.
This normalized contrail length was 0.42 for the 0% trajectory, 0.22 for the 50% trajectory, and 0.0 for the 100%
trajectory.

Table 4 compares the performance of the three trajectories presented by this example. The trajectory with 100%
contrail penalty avoided producing any persistent contrails, but it consumed significantly more fuel than the other
two trajectories. The 50% contrail penalty trajectory mitigated contrail formation by almost 50% by altering its
altitude and only had a slight increase in fuel burn.
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Fig 8. Aircraft performance: (a) velocity time history, (b) altitude time history, (c) fuel burn time history, (d)
persistent contrail formation bar graph

Table 4 Comparison of receding horizon trajectory performance
Contrail Penalty

0%
Contrail Penalty

50%
Contrail Penalty

100%
Max. Velocity 454.1 knots 454.1 knots 467.3 knots
Avg. Velocity 450.6 knots 450.6 knots 464.8 knots
Total Fuel Burn 20,431 lbs 20,734 lbs 21,695 lbs
Flight Time 3.55 hrs 3.55 hrs 3.60 hrs
Normalized Contrail
Length

0.42 0.22 0.00

VI. Conclusions

This paper presented a new strategy to mitigate the formation of persistent contrails. Unlike previous research
studies using RH-MILP for path planning, this work penalized flight through an obstacle instead of precluding it.
The benefit of penalizing flight through an area of RHi > 100% instead of precluding it is that in some cases strict
avoidance of contrail formation is very costly in terms of fuel consumption, as was seen in previous work.11 In
addition to the operational benefits, this method also allows analysis of the tradeoff between persistent contrail
mitigation and increased fuel consumption. A comparison of the computation time to solve the optimizations with
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hard and soft constraints was negligible. Also, due to the scale of the dynamics of the contrail fields, the receding
horizon approach easily accommodated dynamic RHi contours with little added computational complexity.
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