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An Optimal Strategy for Persistent Contrail Avoidance 

Scot E. Campbell1, Natasha A. Neogi2, and Michael B. Bragg3 
University of Illinois Urbana-Champaign, Urbana, IL, 61801 

Persistent contrails have been recognized as a potential threat to the global climate.  This 
paper presents a methodology to optimally reroute aircraft trajectories to avoid the 
formation of persistent contrails with the use of mixed integer programming (MIP).  The 
main contributions of this paper are the introduction of a more realistic fuel burn model, 
and the implementation of a quadratic cost function.   Existing MIP path planning literature 
has used a 1-norm approximation of the vehicle acceleration for fuel burn.  The fuel burn 
model created for this paper is based on aircraft data and engine performance software, and 
the fuel burn cost was approximated with piecewise linear, and quadratic functions for 
implementation into the MIP.   Fuel optimal trajectories for contrail avoidance were created 
for each cost function and the results were compared.  In addition, differences between the 
linear and quadratic cost were investigated with a pathological obstacle field, and the 
sensitivity of the trajectory to changes in the planning horizon length and time step size are 
presented.  For a specific scenario, it was found that persistent contrails could be avoided 
with a 2.76% increase in fuel burn.  

I. Introduction 
VIATION affects the environment through many different pathways including land use, noise pollution, local 
air quality, and climate.1  Currently, its effect on climate is not fully understood,1 but there are concerns that 
aircraft emissions might play a larger role in future global climate change.2,3  The three largest aviation 

emissions effectors on the climate are direct emission of greenhouse gases such as CO2, emissions of NOx, and 
persistent contrails.2,3  In general, persistent contrails are formed when an aircraft passes through an ice-
supersaturated region in the atmosphere.  Although the complete effect of persistent contrails on the environment is 
not known, there is evidence to suggest an effect,4 and it is predicted that persistent contrails have a three to four 
times greater effect on the climate than CO2 emissions.1  With a projected three fold increase in air traffic by the 
year 2025,5 the effect of aviation on the environment will increase with time.  Recent research has investigated 
operational strategies to mitigate persistent contrail formation through air traffic management scenarios.  These 
strategies include the restriction of cruise altitudes,6-8 the real-time adjustment of cruise altitude,9 and rerouting the 
flight plans of aircraft to avoid areas conducive to persistent contrail formation.10  However, while these approaches 
might be effective, they do not seek the true optimal trajectory in terms of fuel cost and contrail avoidance.  
 Optimal trajectory planning has been investigated through many different techniques.11-15  Mixed-integer 
programming (MIP) has been successfully applied to trajectory optimization problems involving constrained 
dynamics and obstacle avoidance using both full horizon, and receding horizon implementations.14-21  One drawback 
to full horizon MIP is the optimization can be intractable for large problems, i.e. many obstacles, discrete time steps, 
dynamic constraints.  To make large problems tractable, a receding horizon controller can be used to speed up the 
solution time.16,17  A receding horizon controller essentially finds the optimal trajectory up to a certain point, called 
the planning horizon, and then approximates the remaining trajectory to the goal.16  The controller executes a pre-
specified number of time steps in the optimal trajectory and the optimization is iterated until the goal is reachable in 
the planning horizon.16 

 This paper will use MIP to find the fuel optimal trajectory of an aircraft flying from O’Hare International Airport 
(KORD) to Los Angeles International Airport (KLAX) while avoiding areas favorable to persistent contrail 
formation.  Unlike previous papers using MIP to find fuel optimal trajectories,19,20 this paper will use a more realistic 
fuel burn model developed from aircraft data and engine performance software.  In addition, due to the nonlinear 
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nature of aircraft fuel burn, this paper will investigate the viability of mixed-integer quadratic programming (MIQP) 
as an alternative to the popular mixed-integer linear programming (MILP) problem formulation. 

II. Contrail Formation and the Atmospheric Model 
Contrails are line-shaped clouds that form behind aircraft at high-altitudes.22 After forming, contrails dissipate if 

the relative humidity with respect to ice (RHi) is low, and persist if the RHi is high.  The RHi threshold at which 
contrails persist is thought to vary between 95-105%,23 but for simplicity, this paper used RHi > 100% to define the 
necessary condition for persistent contrail formation.   

The Rapid Update Cycle (RUC) is an atmospheric prediction system that is principally a numerical forecast 
model developed for users needing short-range weather forecasts.24 The RUC data have horizontal resolutions of 
20km, 40km, and 60km, with 40km being used for this paper because it is the most accurate for contrail 
estimation.10  The vertical resolution of the data are isobaric pressure levels ranging from 100-1000mb in 25mb 
increments.  The RUC does not directly output RHi, but it can be calculated from the relative humidity with respect 
to water (RHw) and the environmental temperature.  This paper used archived RUC data from November 17, 2001. 

For MIP implementation, the areas of RHi > 100% were represented as overlapping cuboids.  Figure 1 shows the 
November 23, 2000 field of RHi at different altitudes.   
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        Fig. 1  Fields of RHi at Different Altitudes on November 23, 2000, RUC data. 
 
Note that the corresponding altitudes to the RUC isobaric pressure levels were found using the standard atmosphere.  
Figure 2 shows the RHi field represented by a set of overlapping cuboids. 
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Fig. 2  Cuboid representation of RHi Field 

III. Aircraft Fuel Burn Model 
Aircraft fuel burn is a complicated quantity that is dependent on many states and aircraft-specific parameters.  In 

practice, fuel burn is predicted based on flight test data taken over a wide range of operating conditions.  In lieu of 
these data, fuel burn can be approximated with a limited set of aircraft and engine data.  Previous studies have 
predicted fuel burn using the FAA’s System for Assessing Global Emissions (SAGE),10 a modified version of 
SAGE,25 and a quadratic approximation based on velocity.26  Existing work using the MILP framework have 
approximated  fuel burn by the 1-norm of the aircraft acceleration.19,20  This paper uses aircraft data and engine 
performance simulation software to approximate fuel burn over the cruise flight envelope.  This method is better 
model than a 1-norm approximation or velocity approximation, but simple enough to implement in the mixed-
integer programming framework. 

A. Aircraft Performance 
The aircraft performance model used for this paper was created to emulate the en-route performance 

characteristics of medium-range aircraft such as the Boeing 737 and Airbus A320.  The following restrictions were 
placed on the altitude and Mach number to confine aircraft performance to the cruise envelope, as seen in Eq. (1) 

 
ftzft

M
000,42000,28

82.070.0
≤≤

≤≤
 (1) 

where M is the Mach number and z is the altitude.  To compute the performance, the drag coefficient was extracted 
from drag polar data27 for a range of Mach numbers, altitudes, and weights.  The thrust required was calculated for 
the range of Mach numbers and altitudes given by Eq. (1) and for three weights, each representing the aircraft 
weight at a different fuel state along the flight path.  

B. Engine Performance 
Engine performance was obtained with the Engine Performance Analysis Program v4.2.29 This program uses a 

set of engine parameter inputs and flight conditions (Mach number, altitude) to compute curves of thrust specific 
fuel consumption (TSFC) vs. engine thrust.  The engine was assumed to be a high-bypass turbofan, and the software 
input parameters are given in Table 1.   

 
Table 1  Engine Performance Software Input Parameters 

Mass Flow Rate  
(max throttle, seal level) 779 lbm/sec 

Bypass Ratio 5.1 
Compressor Pressure Ratio 32.8 

Fan Pressure Ratio 2.3 
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The program was run for the range of Mach numbers and altitudes given by Eq. (1).  The engine performance data 
were tabulated for use in the aircraft fuel burn model. 

C. Aircraft Fuel Burn 
Aircraft fuel burn was calculated for a range of Mach numbers, altitudes, and weights using Eq. (2) 

 TSFCTW reqf ⋅=  (2) 

where Wf is the fuel flow, Treq was found by the aircraft performance calculations, and TSFC was found by the 
engine performance model.  Figures 3 and 4 show the relationship of altitude and velocity with fuel flow, 
respectively, for an aircraft weight of 145,000 lb with engine and drag characteristics described above.   
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  Fig 3. Altitude vs. Fuel Flow for W = 145,000 lb    Fig 4. Velocity vs. Fuel Flow for W = 145,000 lb 
 
 Figures 3 and 4 show the highly nonlinear nature of fuel burn.  To simplify this behavior, a nominal flight 
condition was selected (Mach number, altitude) for a given weight, and the change in fuel burn around the nominal 
flight condition was modeled.  The nominal cruise Mach number was selected to be 0.78 based on typical cruise 
speeds for the type of aircraft considered in this model.30 The nominal cruise altitude was selected based on the 
optimal altitude for a Mach number of 0.78 and for a given weight.  Ideally, the nominal altitude would increase 
continuously as the weight of fuel is burned off of the aircraft, resulting in a cruise climb flight profile. However, 
this procedure is generally not performed in practice because of air traffic control restrictions. Instead, a step-climb 
procedure is used, where the altitude is increased in discrete steps along the flight path.31 This model emulated a step 
climb by using three nominal cruise altitudes based on the optimal altitude for three aircraft weights.  The initial 
weight was assumed to be 145,000 lbs, and the subsequent weights were 135,000 lbs and 125,000 lbs, which 
corresponded to optimal altitudes of approximately 34,000 ft, 36,000 ft, and 38,000 ft, respectively, for a Mach 
number of 0.78.  Table 3 gives the nominal flight conditions used for this model. 
 

Table 2  Nominal Flight Conditions 
Weight (lb) Altitude (ft) Mach number True airspeed (knots) 

145,000 34,000 0.78 451 
135,000 36,000 0.78 447 
125,000 38,000 0.78 447 

 
Figures 5 and 6 show the sensitivity of fuel flow to changes in altitude and velocity around the nominal flight 
conditions, respectively.   
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    Fig. 5  Sensitivity of fuel flow to altitude     Fig. 6 Sensitivity of fuel flow to velocity 
 

IV. MILP Receding Horizon Formulation 
This section describes the formulation of the persistent contrail mitigation problem as a receding horizon mixed-

integer linear program (RH-MILP).  The general structure of the receding horizon controller follows from 
previously published work.15,16  To summarize this work, the RH-MILP algorithm can be thought of in two parts: a 
detailed trajectory optimization with a pre-specified time horizon, followed by a less refined approximation of the 
cost from the end of the detailed trajectory to the goal.  Once the detailed trajectory and approximate cost-to-go is 
optimized, a pre-specified number of time steps in the detailed trajectory are executed, and the optimization is 
recomputed with the updated initial condition.  This procedure continues until the goal is reachable in the time 
horizon of the detailed trajectory, also called the planning horizon.  This section will show the implementation of a 
more realistic aircraft fuel burn model within a general framework given by existing work in RH-MILP for 
trajectory optimization.15,16 The optimizations were solved using CPLEX 10.2 on a laptop with a 2.16 GHz Intel 
Core2 Duo processor and 2 GB of RAM. 

A. Aircraft Model Implementation – The Constraints 
The detailed trajectory optimization phase of the receding horizon controller uses MILP to find the fuel optimal 

trajectory from an initial state to the end of the planning horizon.  Previous studies investigated fuel optimal RH-
MILP by approximating fuel burn by the 1-norm of the acceleration.19,20  This paper provides a more realistic 
implementation of fuel burn and aircraft performance limits encountered in a high-altitude transonic cruise scenario.   
 The dynamical constraints presented here are that of a double integrator and the evolution of the aircraft states is 
governed by Eq. (5) 
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The vector x represents the position and velocity of the aircraft, the vector u represents the acceleration, k is the 
discrete time step, and ∆t is the size of the time step.   
 The calculation of velocity magnitude from the individual velocity components requires the square root of the 
sum of the squares, which is obviously a nonlinear operation and inadmissible in MILP.  Therefore an accurate 
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method is needed to approximate the magnitude of velocity because fuel burn is largely dependent on the speed of 
the aircraft.  The following procedure provides a linear approximation of the velocity and the acceleration for 
implementation into the MILP15 

 [ ] [ ] [ ] ⎟
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where V and A are the velocity and acceleration magnitudes respectively, bv is a binary variable, R is a large 
constant, and m is an integer in the set of integers from 1 to M.  Equation 8 is necessary to include non-convex 
constraints on minimum velocity.  It should be noted here that the velocity and acceleration magnitude 
approximations only account for motion in the x-y direction.  Motion in the z-direction was treated separately.  
Additionally, V and A were bounded to constrain the optimization within a realistic flight envelope, as given in Eqs. 
(9) and (10): 

 maxmin VVV ≤≤   (9) 

 maxAA ≤   (10) 

The vertical velocity was constrained by a rate of climb limit, which was a function of the altitude.  The 
maximum rate of climb was defined by Eq. (11) 

 01max ββ =+ zRC   (11) 

where RCmax is the maximum rate of climb, and βi was computed in the aircraft model.  The rate of climb was 
constrained by the maximum rate of climb using Eq. (12) 

 0max ≤− RCvz   (12) 

The maximum descent rate was represented by a lower bound on the vertical velocity and was chosen to be a value 
consistent with normal operation of commercial aircraft.28 

Terminal constraints were used to encourage the aircraft to reach the goal if the goal was reachable in the 
planning horizon.  These constraints use binary variables and are shown in Eqs. (13) and (14) 
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where bf[k] is the binary variable corresponding to time step k, (xf, yf, zf) is the final position, and R is a large 
constant used to relax the constraint.  In the literature, this approach is referred to as the “big-M” approach. 

B. Aircraft Model Implementation – The Cost 
As shown in section III, aircraft fuel burn is extremely nonlinear by nature, and in turn, difficult to implement in 

a linear structure.  In a cruise flight condition, the main drivers of fuel burn are velocity, altitude, and weight.  If 
climbing or descending, the throttle setting is also a factor.  To reiterate the assumptions used in section III, the 
effect of Mach number, altitude, and throttle setting were assumed to be decoupled around a nominal flight 
condition and weight.  Also, the effect of weight was accounted for by changing the nominal flight condition at pre-
specified intervals of time, corresponding to the approximate time the aircraft becomes 135,000 lbs and 125,000 lbs 
during the flight.  The fuel burn curves given in Figs. 5 and 6 were written as a set of piecewise linear functions.  
The piecewise linear representation of fuel burn as a function of weight is described by Eqs. (15) and (16): 

 ( ) ( )121 ,...,max +++= iia zzWf µµµµ     for i = 1,3,5,… (15) 

 ( ) ( )121 ,...,max +++= iiv VVWf σσσσ     for i = 1,3,5,… (16) 

where fa(W) and fv(W) are the fuel burn associated with altitude and velocity, respectively, W is weight, and µi and σi 
determine the piecewise linear function.  These equations are written in MILP format as follows: 

 

1

21

+≤−

≤−

iai

a

fz

fz

µµ

µµ
M     for i = 1,3,5,… (17) 

 

1

21

+≤−

≤−

ivi

v

fV

fV

σσ

σσ
M     for i = 1,3,5,… (18) 

It should be noted that the coefficients µ and σ depend on the aircraft weight; therefore these equations are updated 
whenever the aircraft weight is updated. 
 The effect of climb and descent on fuel burn was assumed to be decoupled from the effects of velocity, altitude, 
and weight.  During cruise, commercial aircraft frequently change altitude using the flight level change mode of the 
flight management system, and therefore it was assumed that the thrust is set to maximum climb thrust during climb, 
and idle during descent.  The climb and descent state was characterized with Eq. (19) 

 
descendz

bcz

bRv
bRv
⋅≤−

⋅≤ lim  (19) 

where vz is the vertical velocity, R is a large constant, bclimb is a binary variable to indicate climb, and bdescend is a 
binary variable to indicate descent.   

The last component of the cost is the fuel burn associated with acceleration, which is determined under the 
assumption that the fuel burn linearly increases with acceleration.  In full, the cost function for the detailed trajectory 
optimization is written as Eq. (20) 
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N

i
ifva fbfbfbtAffJ

p

,,lim,
1

, ++−∆++= ∑
=

  (20) 

where fa and fv are the fuel cost associated with altitude and velocity, respectively, A is acceleration, fclimb is a 
weighting associated with maximum climb thrust, fdescend is a weighting associated with idle, and ∆t is the time step.  
Again, it should be noted that fa and fv change with aircraft weight, which is updated periodically during the receding 
horizon optimization.  

C. Obstacle Avoidance Constraints 
Obstacle avoidance is accomplished within the MILP framework by using n constraints to break the problem 

into n convex subproblems, which are solvable by linear programming.  This identical procedure was used in some 
of the existing literature.15,16,18  For simplicity, this paper only considered cuboid obstacles to represent areas of RHi 
greater than 100%.  More complex regions were created with the intersection of multiple cuboids. 

D. The Cost-to-Go 
The detailed trajectory is planned until the end of the planning horizon, and the remaining trajectory to the goal 

is approximated by the cost-to-go function.  The cost-to-go function approximates the fuel required to go from the 
end of the planning horizon to the goal by creating a cost map containing the fuel to travel from each node in the 
map to the goal, and an additional fuel cost to connect the detailed trajectory to the cost map.   
 The cost map, Gij, is a measure of the cost between nodes i and j, and is found using a visibility graph weighted 
by the distance between nodes and a cost associated with the altitude of the nodes. The visibility graph was found 
with a linear program.15 

To assign a realistic cost approximation to the visibility graph, it was weighted by a two part function.  The first 
part approximates the fuel burn between the nodes based on the Euclidian distance between the nodes, and the 
second part is an altitude penalty based on a quadratic altitude function evaluated at the average altitude of the 
connecting nodes.  Therefore, the cost to travel between nodes i and j is given by Eqs. (21) and (22) 

 32
2

12
αααλ +++−= avgavgjiij zzG xx   (21) 

 ( )jiavg zzz +=
2
1

 (22) 

where zavg is the average altitude of the connecting nodes, αi is determined by the aircraft model, and λ is a constant 
used to transform distance to fuel burn.  Dijkstra’s Algorithm was applied to the cost map to find the path of 
minimum fuel cost from each node to the goal.  The output is a vector, Ci, which gives the cost to go from each node 
i in the cost map to the goal. 
 The cost-to-go was completed by connecting the end of the detailed trajectory to a point in the cost map.  The 
position at the end of the detailed trajectory, x[k+Np], and the node in the cost map, xcp, are chosen by the 
optimization so that they are mutually visible and that the fuel cost required to travel between them is minimized.  
Visibility is ensured by requiring a set of interpolation points between x[k+Np] and xcp to remain outside of the 
obstacles defined in subsection C.  Equation (23) is used to select the visible point 
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where bvis,i is a binary variable for cost point i, and ncp is the number of nodes.  The cost associated with traveling 
this path is a function of the Euclidian distance and the altitude of the interpolation points.  The Euclidian distance, 
D, was approximated with Eq. (24) 
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where mi is the set of integers between 1 and Mi, and ∆x, ∆y, and ∆z are the distances between x[k+Np] and xcp in the 
x, y, and z direction, respectively.  The altitude of the interpolation points was penalized using the same philosophy 
as in equation 17, which penalizes flight away from the optimal altitude.  The complete cost-to-go function is given 
in Eq. (25) 

 ∑
=

++⋅=
In

i
ixvis

T DfbCJ
1

,   (25) 

where C is the cost vector, fx is the interpolation point altitude cost, nI is the number of interpolation points, and D is 
the cost of flight between x[k+Np] and xcp. 

E. The Complete Cost Function 
 The complete cost function is the sum of Eqs. (22) and (27).  This cost reflects the detailed cost in the planning 
horizon and the cost approximation from the cost-to-go function.  Note that the cost-to-go and the detailed trajectory 
are not completely independent due to the fact that x[k+Np] and xcp are not chosen independently.  

V. MIQP Receding Horizon Formulation 
The RH-MILP was reformulated using receding horizon mixed-integer quadratic programming (RH-MIQP) 

because a quadratic cost is a better representation of the sensitivity of fuel burn to aircraft velocity and altitude, as is 
shown in section III.  All of the dynamical constraints, as well as the cost-to-go approximation, were unchanged in 
this reformulation.   

The cost function of the RH-MIQP formulation is similar to the RH-MILP formulation in that it is composed of a 
detailed trajectory cost and a cost-to-go.  For this paper, only the detailed trajectory cost was reformulated as a 
quadratic function, the cost-to-go was left unchanged.  The quadratic altitude and velocity costs were fit from the 
curves of Figs. 5 and 6, and take the form of Eqs. (26) and (27), respectively. 

 ( ) 32
2

1, ηηη +−= zzWf aQ   (26) 

 ( ) 65
2

4, ηηη +−= VVWf vQ  (27) 

where fQ,a(W) and fQ,v(W) are the altitude and velocity costs, respectively, and ηi is taken from the aircraft model.  
Note that like in the RH-MILP formulation, fQ,a(W) and fQ,v(W) are updated when the aircraft weight changes.  The 
sum of Eqs. (28) and (29) form the quadratic component of the cost function, which is shown graphically in Fig. 7.   
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Fig. 7 Quadratic relationship of velocity and altitude with fuel burn 

 
The climb and descent costs, the acceleration cost, and the terminal cost were unchanged from the RH-MILP 
formulation.  The detailed trajectory cost function is given by Eq. (28) 
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where JQ is the cost, frc is the vertical velocity cost, A is the acceleration, ∆t is the size of the time step, bf is a binary 
variable, and fterm is the terminal cost. 

VI. Example Results 
Fuel optimal, and persistent contrail avoiding, trajectories for a flight between Chicago and Los Angeles were 

found for the RHi field of November 17, 2001.  Solutions were found using receding horizon MIQP and MILP, and 
those results were compared to their respective limiting case (full horizon) solutions.  The piecewise linear 
approximation used in the MILP was analyzed for different numbers of piecewise linear segments.  To highlight the 
differences between MILP and MIQP, limiting case solutions were found for a pathological obstacle field designed 
to distinguish the characteristics of the quadratic and linear costs.  This obstacle field was also used to analyze the 
sensitivity of the receding horizon controller to changes in planning horizon length and time step size.  All of the 
examples were computed using CPLEX 10.232 on a PC laptop with a 2.16GHz Intel Core2 Duo processor and 2GB 
of RAM. 

A. Fuel Optimal Trajectory for Persistent Contrail Avoidance 
 
 This example considers a single flight from O’Hare International Airport (ORD) to Los Angeles International 
Airport (LAX) using atmospheric data from November 17, 2001.  The objective of this example was to find a fuel 
optimal trajectory for this route while flying clear of atmospheric areas containing RHi > 100%.  The fuel burn cost 
was derived from the model presented in Section III, and the formulations of Sections IV and V describe the 
dynamical and aircraft performance constraints.  Table 3 lists the receding horizon parameters and the aircraft 
performance limitations used in this example. 
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Table 3 Receding horizon parameters and aircraft performance limits 
Number of steps in planning horizon (Np) 8 

Number of steps in the execution horizon (Ne) 4  
Time step size (∆t) 3 min 

Maximum en-route velocity (Vmax) 470 knots 
Minimum en-route velocity (Vmin) 417 knots 

Maximum altitude (zmax) 42,000 ft 
Minimum altitude (zmin) 28,000 ft 

 
 Figure 8 shows trajectories overlaid on two-dimensional contour plots of the RHi field at different altitudes.  The 
blue, magenta, and cyan trajectories correspond to RH-MILP formulations, each of which used a different number of 
piecewise linear segments in the cost function.  The black trajectory was optimized with a RH-MIQP formulation, 
and the red trajectory represents the MILP limiting case formulation, where the goal is contained within the planning 
horizon.  The trajectories were initiated at approximately 34,000 ft, and as seen in Fig. 8b, a region of RHi > 100% 
over southern Iowa and Missouri forced the trajectories to adjusts their routes.  The piecewise linear trajectories 
followed an almost identical horizontal flight path to avoid contrail formation.  The quadratic trajectory deviated 
from the piecewise linear trajectories, which was caused by a difference in the sensitivity of altitude change to fuel 
burn in their respective cost functions.  The full horizon trajectory followed a much straighter flight path to LAX 
due to the fact that it was computed in one step and not in a receding horizon fashion. 
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(c) (d) 

Fig. 8  Fuel optimal trajectories overlaid on contour plots of the RHi field at altitudes of (a) 30122 ft, (b) 
34056 ft, (c) 38737 ft, and (d) 44745 ft.  A map showing the boundaries of North America is in the 
background.   
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 Figure 9 shows the aircraft and computational performance associated with the trajectories presented in Fig. 8.  
Figure 9a shows the velocity profiles of the trajectories, and it is easy to see that the velocities corresponding to the 
receding horizon formulations are very similar.  The difference between the RH-MILPs and the MIQP can, at least 
in part, be explained by the fact that the MIQP is less sensitive to small velocity variations around the nominal 
velocity.  Figure 9b shows the altitude profiles of the trajectories, where it can be seen that an area of RHi > 100% 
was encountered approximately 0.4 hours into the flight.  The four and six piece RH-MILP trajectories chose to 
climb over the area, while the two piece RH-MILP, the RH-MIQP, and the full horizon trajectories chose to descend 
under the area.  The climb seen by all trajectories at 2 hours is due to the preprogrammed step-climb profile 
discussed earlier.  Figure 9d shows the computation expense of each method.  The two piece RH-MILP was the 
cheapest, followed by the four and six piece RH-MILPs, and the RH-MIQP was by far the most expensive from a 
computation standpoint.  
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Fig 9.  Aircraft and computational performance: (a) velocity time history, (b) altitude time history, (c) fuel 
burn time history, (d) receding horizon computation time  
 
 Table 4 compares the performance of the four trajectories presented by this example.  The RH-MIQP showed the 
best performance in terms of total fuel burn, but was by far the most computationally expensive.  The four and six 
segment RH-MILPs displayed better fuel burn performance than the two segment RH-MILP, and were only slightly 
more computationally expensive.  The receding horizon trajectories burned between 2.88 % and 2.23 % more fuel 
than the full horizon limiting case.  Overall, the full horizon trajectory burned 2.76% more fuel than a trajectory 
disregarding contrail avoidance.   
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Table 4  Comparison of  receding horizon trajectory performance 
 MILP Np = 8, Ne = 4 

2 Segment 
MILP Np = 8, Ne = 4 

4 Segment 
MILP Np = 8, Ne = 4 

6 Segment MIQP Np = 8, Ne = 4 

Max. Velocity 462.3 knots 462.1 knots 462.1 knots 457.3 knots 
Avg. Velocity 454.7 knots 454.6 knots 454.6 knots 451.8 knots 
Total Fuel Burn 20,824 lbs 20,731 lbs 20,734 lbs 20,695 lbs 
% Difference from 
Full Horizon 2.88 % 2.42 % 2.43 % 2.23 % 

Flight Time 3.35 hrs 3.35 hrs 3.35 hrs 3.40 hrs 
Max CPU time /step 3.23 sec 8.88 sec 7.27 sec 62.73 sec 
Avg CPU time /step 1.94 sec 3.03 sec 2.69 sec 30.83 sec 

B. Comparison of MILP and MIQP 
 
A pathological obstacle field was created to exploit the inherent differences between limiting case full horizon 

MILP and MIQP formulations.  Figure 10 shows MILP and MIQP trajectories in this obstacle field.  The trajectory 
created by MILP climbed over the first obstacle, and around the next two, whereas the trajectory created by MIQP 
climbed over the first obstacle and descended below the next two, making a straight horizontal line to the goal (see 
Fig. 10a).  The MIQP trajectory did this because the quadratic cost is less sensitive to small deviations away from 
the nominal optimal altitude.  On the other hand, the MILP optimization made the decision that descending under 
obstacles 2 and 3 was more expensive than going around them.  Note that it is possible to create a linear 
approximation to better represent small changes around the nominal, and the MILP would perform better in this 
scenario.  However, that linear approximation would be less sensitive to large deviations from the nominal, so a 
different pathological scenario could be developed to exploit the shortcomings of the MILP. 

  
(a) (b) 

Fig. 10  Comparison of MIQP and MILP globally optimal trajectories in a pathological obstacle field shown in 
an (a) overhead view and (b) a three-dimensional view 
 
Figure 11 shows the velocity and altitude time histories for the trajectories of Fig. 10.  Notice in the velocity time 
history that the velocity associated with the MILP increases at about 1.5 hours.  This is the time that corresponds to 
the MILP decision to fly around the obstacles instead of descend under them.  The velocity increase corresponds to 
the longer path length required to reach the goal.  Overall, the MILP trajectory burned 0.4% more fuel than the 
MIQP trajectory. 
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Fig. 11  Comparison of MIQP and MILP globally optimal aircraft performance in a pathological obstacle 
field: (a) velocity time history, (b) altitude time history 

C. Effect of Planning Horizon Length and Time Step Size 
 In the receding horizon implementation, the planning horizon length (Np) and the time step size (∆t) have an 
effect on the shape of the trajectory.  This effect is complicated, but this section will try to isolate the differences and 
explain possible exceptions to the presented scenarios.  The effect of planning horizon was isolated by comparing 
two trajectories with different planning horizons, but with the same execution horizon and time step.  Figure 12 
shows the effect of planning horizon in the pathological obstacle field.  

  
(a) (b) 

Fig. 12  Effect of planning horizon length on the receding horizon trajectory 
 
Notice that the trajectory with Np = 16 is, in general, farther away from the obstacles than the trajectory with Np = 8. 
This behavior is caused when the planning horizon is long enough for the trajectory to “peek” around the obstacle 
during the receding horizon iterations.  Essentially, the receding horizon controller moves the detailed trajectory 
around the obstacle to connect the line of sight with the goal instead of the obstacles along the path.  In this case, 
doubling the length of the planning horizon corresponded to increasing fuel burn by 2.1 %. 
 The effect of time step size on the receding horizon trajectory is similar to the effect of planning horizon length.  
Figure 13 shows receding horizon trajectories with time step sizes of 3 min and 6 min in the pathological obstacle 
field.  Notice that the trajectory with ∆t = 6 min is farther away from the obstacles.  Increasing the size of the time 
step increases the reachable space in the planning horizon, allowing the trajectory in the planning horizon to “peek” 
around the obstacles.  In this case, doubling the size of the time step corresponded to an increase in fuel burn of 
1.8%. 
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(a) (b) 

Fig. 13  Effect of time step size on the receding horizon trajectory 
 
 This section presented a couple selected scenarios to explain the effect of planning horizon length and time step 
size on the shape of a receding horizon trajectory.  It is extremely important to note that this behavior is restricted to 
obstacle fields such as the one presented, which is relatively sparse and scaled appropriately for the contrail 
problem.  A denser obstacle field would decrease the sensitivity to the parameters presented because, most likely, 
the line of sight to the goal would be blocked by other obstacles, and the apparent benefit of “peeking” would not 
exist.  Also, another important point is that if the planning horizon length or time step size is increased large enough 
to stretch the reachable space of the planning horizon around the upcoming obstacles, the trajectory will closely 
match the full horizon solution (think of the limiting case being if the goal is reachable from the initial position).  
The disadvantage to a planning horizon of this type is that the computational effort is extremely high, which negates 
the benefit of the receding horizon implementation. 

VII. Conclusions 
This paper showed the viability of mixed-integer programming as a strategy to optimally reroute aircraft to avoid 

the formation of persistent contrails.  In addition, it analyzed the inherent differences between MILP and MIQP, and 
investigated the effect of planning horizon length, and time step size on receding horizon trajectory generation.  The 
following specific conclusions were taken from this research: 

 
1. Receding horizon mixed-integer programming is a viable option to optimize aircraft trajectories to 

avoid persistent contrail formation.  For the example scenario considered, the best case contrail 
avoidance trajectory resulted in a 2.76% increase in fuel burn over a trajectory which did not avoid 
attempt to avoid contrail formation. 

2. While mixed-integer quadratic programming is far more computationally expensive than mixed-integer 
linear programming, it produced a more efficient trajectory when used in a pathological obstacle field.  
The viability of MIQP over MILP depends on the required accuracy of solution and the computational 
demands of the given problem. 

3. Within the framework of this problem, the planning horizon length and the time step size had great 
influence over the solution.  This behavior is also dependent on the size of the obstacles in the path of 
the vehicle.  Increasing the length of the planning horizon and the size of the time step had the effect of 
stretching the trajectory away from the obstacles, and in turn the most efficient solution. 
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